Subgrid Model Influence in Large Eddy Simulations of Non-reacting Flow in a Gas Turbine Combustor

2017 ◽  
Vol 100 (2) ◽  
pp. 457-479 ◽  
Author(s):  
W. J. S. Ramaekers ◽  
F. A. Tap ◽  
B. J. Boersma
2007 ◽  
Vol 78 (3) ◽  
pp. 035114 ◽  
Author(s):  
Timothy C. Williams ◽  
Robert W. Schefer ◽  
Joseph C. Oefelein ◽  
Christopher R. Shaddix

Author(s):  
Klaus Peter Geigle ◽  
Wolfgang Meier ◽  
Manfred Aigner ◽  
Chris Willert ◽  
Marc Jarius ◽  
...  

A technical gas turbine combustor has been studied in detail with optical diagnostics for validation of Large-Eddy Simulations (LES). OH* chemiluminescence, OH laser-induced fluorescence (LIF) and particle image velocimetry (PIV) have been applied to stable and pulsating flames up to 8 bar. The combination of all results yielded a good insight into the combustion process with this type of burner and forms a data base which was used for the validation of complex numerical combustion simulations. Large-Eddy Simulations (LES) including radiation, convective cooling and air cooling were combined with a reduced chemical scheme that predicts NOx emissions. Good agreement of the calculated flame position and shape with experimental data was found.


Author(s):  
Sandeep Jella ◽  
Pierre Gauthier ◽  
Gilles Bourque ◽  
Jeffrey Bergthorson ◽  
Ghenadie Bulat ◽  
...  

Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Post-flame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence-chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry, is the Eddy Dissipation Concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants which were based on an isotropic cascade analysis in the RANS context. The objectives of this paper are: (i) To formulate the EDC cascade idea in the context of LES; and (ii) To validate the model using experimental data consisting of velocity (PIV measurements) and major species (1-D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.


1997 ◽  
Author(s):  
William Calhoon, Jr. ◽  
Suresh Menon ◽  
William Calhoon, Jr. ◽  
Suresh Menon

Author(s):  
S. James ◽  
M. S. Anand ◽  
B. Sekar

The paper presents an assessment of large eddy simulation (LES) and conventional Reynolds averaged methods (RANS) for predicting aero-engine gas turbine combustor performance. The performance characteristic that is examined in detail is the radial burner outlet temperature (BOT) or fuel-air ratio profile. Several different combustor configurations, with variations in airflows, geometries, hole patterns and operating conditions are analyzed with both LES and RANS methods. It is seen that LES consistently produces a better match to radial profile as compared to RANS. To assess the predictive capability of LES as a design tool, pretest predictions of radial profile for a combustor configuration are also presented. Overall, the work presented indicates that LES is a more accurate tool and can be used with confidence to guide combustor design. This work is the first systematic assessment of LES versus RANS on industry-relevant aero-engine gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document