scholarly journals Numerical Simulations and Experiments of Ignition of Solid Particles in a Laminar Burner: Effects of Slip Velocity and Particle Swelling

Author(s):  
Antonio Attili ◽  
Pooria Farmand ◽  
Christoph Schumann ◽  
Sima Farazi ◽  
Benjamin Böhm ◽  
...  

Abstract Ignition and combustion of pulverized solid fuel is investigated in a laminar burner. The two-dimensional OH radical field is measured in the experiments, providing information on the first onset of ignition and a detailed characterization of the flame structure for the single particle. In addition, particle velocity and diameter are tracked in time in the experiments. Simulations are carried out with a Lagrangian point-particle approach fully coupled with an Eulerian solver for the gas-phase, which includes detailed chemistry and transport. The numerical simulation results are compared with the experimental measurements in order to investigate the ignition characteristics. The effect of the slip velocity, i.e. the initial velocity difference between the gas-phase and the particle, is investigated numerically. For increasing slip velocity, the ignition delay time decreases. For large slip velocities, the decrease in ignition delay time is found to saturate to a value which is about 40% smaller than the ignition delay time at zero slip velocity. Performing a simulation neglecting the dependency of the Nusselt number on the slip velocity, it is found that this dependency does not play a role. On the contrary, it is found that the decrease of ignition delay time induced by the slip velocity is due to modifications of the temperature field around the particle. In particular, the low-temperature fluid related to the energy sink due to particle heating is transported away from the particle position when the slip velocity is non-zero; therefore, the particle is exposed to larger temperatures. Finally, the effect of particle swell is investigated using a model for the particle swelling based on the CPD framework. With this model, we observed negligible differences in ignition delay time compared to the case in which swelling is not included. This is related to the negligible swelling predicted by this model before ignition. However, this is inconsistent with the experimental measurements of particle diameter, showing a significant increase of diameter even before ignition. In further simulations, the measured swelling was directly prescribed, using an analytical fit at the given conditions. With this approach, it is found that the inclusion of swelling reduces the ignition delay time by about 20% for small particles while it is negligible for large particles.

Author(s):  
R. Joklik ◽  
C. Fuller ◽  
B. Turner ◽  
P. Gokulakrishnan

In this work distillation curve (DC) and probability distribution function (PDF) models of multi-component droplet evaporation were investigated in order to determine the feasibility of recovering information about the gas-phase composition from a minimal number of variables associated with the droplet. Both models were assessed against a discrete component model based on the classic B-number formulation using a 63 component model of JP-8. The results indicate that, although the gas-phase fuel composition may undergo large changes during the droplet lifetime, it is possible to recover composition information in terms of the major classes of species present with reasonable accuracy (+/− 5%) using the DC and PDF models. The potential impact of variation in gas-phase fuel composition was investigated by performing ignition delay time (IDT) calculations using two detailed chemical kinetic mechanisms for JP-8. The results indicate that, especially in the low temperature region (700 K – 900 K), variation in gas-phase fuel composition can have a large impact on the ignition delay time. Experimental IDT measurements at 900 and 950 K showed a larger variation in IDT due to composition than that predicted by the models.


Author(s):  
A. G. Korotkikh ◽  
◽  
V. A. Arkhipov ◽  
I. V. Sorokin ◽  
E. A. Selikhova ◽  
...  

The paper presents the results of ignition and thermal behavior for samples of high-energy materials (HEM) based on ammonium perchlorate (AP) and ammonium nitrate (AN), active binder and powders of Al, B, AlB2, and TiB2. A CO2 laser with a heat flux density range of 90-200 W/cm2 was used for studies of ignition. The activation energy and characteristics of ignition for the HEM samples were determined. Also, the ignition delay time and the surface temperature of the reaction layer during the heating and ignition for the HEM samples were determined. It was found that the complete replacement of micron-sized aluminum powder by amorphous boron in a HEM sample leads to a considerable decrease in the ignition delay time by a factor of 2.2-2.8 at the same heat flux density due to high chemical activity and the difference in the oxidation mechanisms of boron particles. The use of aluminum diboride in a HEM sample allows one to reduce the ignition delay time of a HEM sample by a factor of 1.7-2.2. The quasi-stationary ignition temperature is the same for the AlB2-based and AlB12-based HEM samples.


Author(s):  
Haoqiang Sheng ◽  
Xiaobin Huang ◽  
Zhijia Chen ◽  
Zhengchuang Zhao ◽  
Hong Liu

2021 ◽  
Vol 230 ◽  
pp. 111426
Author(s):  
Saja Almohammadi ◽  
Mireille Hantouche ◽  
Olivier P. Le Maître ◽  
Omar M. Knio

2021 ◽  
Vol 223 ◽  
pp. 98-109
Author(s):  
Khaiyom Hakimov ◽  
Farhan Arafin ◽  
Khalid Aljohani ◽  
Khalil Djebbi ◽  
Erik Ninnemann ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 111-118
Author(s):  
Rui Shi ◽  
Chang Hui Wang ◽  
Yan Nan Chang

Based on GRI3.0, we study the main chemical kinetics process about reactions of singlet oxygen O2(a1Δg) and ozone O3 with methane-air combustion products, inherit and further develop research in chemical kinetics process with enhancement effects on methane-air mixed combustion by these two molecules. In addition, influence of these two molecules on ignition delay time and flame speed of laminar mixture are considered in our numerical simulation research. This study validates the calculation of this model which cotains these two active molecules by using experimental data of ignition delay time and the speed of laminar flame propagation. In CH4-air mixing laminar combustion under fuel-lean condition(ф=0.5), flame speed will be increased, and singlet oxygen with 10% of mole fraction increases it by 80.34%, while ozone with 10% mole fraction increase it by 127.96%. It mainly because active atoms and groups(O, H, OH, CH3, CH2O, CH3O, etc) will be increased a lot after adding active molecules in the initial stage, and chain reaction be reacted greatly, inducing shortening of reaction time and accelerating of flame speed. Under fuel rich(ф=1.5), accelerating of flame speed will be weakened slightly, singlet oxygen with 10% in molecular oxygen increase it by 48.93%, while ozone with 10% increase it by 70.25%.


Sign in / Sign up

Export Citation Format

Share Document