scholarly journals Large Eddy Simulation of an Ethanol Spray Flame with Secondary Droplet Breakup

Author(s):  
S. Gallot-Lavallée ◽  
W. P. Jones ◽  
A. J. Marquis

AbstractA computational investigation of three configurations of the Delft Spray in Hot-diluted Co-flow (DSHC) is presented. The selected burner comprises a hollow cone pressure swirl atomiser, injecting an ethanol spray, located in the centre of a hot co-flow generator, with the conditions studied corresponding to Moderate or Intense Low-oxygen Dilution (MILD) combustion. The simulations are performed in the context of Large Eddy Simulation (LES) in combination with a transport equation for the joint probability density function (pdf) of the scalars, solved using the Eulerian stochastic field method. The liquid phase is simulated by the use of a Lagrangian point particle approach, where the sub-grid-scale interactions are modelled with a stochastic approach. Droplet breakup is represented by a simple primary breakup model in combination with a stochastic secondary breakup formulation. The approach requires only a minimal knowledge of the fuel injector and avoids the need to specify droplet size and velocity distributions at the injection point. The method produces satisfactory agreement with the experimental data and the velocity fields of the gas and liquid phase both averaged and ‘size-class by size-class’ are well depicted. Two widely accepted evaporation models, utilising a phase equilibrium assumption, are used to investigate the influence of evaporation on the evolution of the liquid phase and the effects on the flame. An analysis on the dynamics of stabilisation sheds light on the importance of droplet size in the three spray flames; different size droplets play different roles in the stabilisation of the flames.

Author(s):  
Sourabh V. Apte ◽  
Mikhael Gorokhovski ◽  
Parviz Moin

Large-eddy simulation (LES) of reacting multi-phase flows in practical combustor geometries is essential to accurately predict complex physical phenomena of turbulent mixing and combustion dynamics. This necessitates use of Lagrangian particle-tracking methodology for liquid phase in order to correctly capture the droplet evaporation rates in the sparse-liquid regime away from the fuel injector. Our goal in the present work is to develop a spray-atomization methodology which can be used in conjuction with the standard particle-tracking schemes and predict the droplet-size distribution accurately. The intricate process of primary atomization and lack of detailed experimental observations close to the injector requires us to model its global effects and focus on secondary breakup to capture the evolution of droplet sizes. Accordingly, a stochastic model for LES of atomizing spray is developed. Following Kolmogorov’s idea of viewing solid particle-breakup as a discrete random process, atomization of liquid blobs at high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. Kolmogorov’s discrete model of breakup is represented by Fokker-Planck equation for the temporal and spatial evolution of droplet radius distribution. The parameters of the model are obtained dynamically by relating them to the local Weber number. A novel hybrid-approach involving tracking of individual droplets and a group of like-droplets known as parcels is developed to reduce the computational cost and maintain the essential features and dynamics of spray evolution. The present approach is shown to capture the complex fragmentary process of liquid atomization in idealized and realistic Diesel and gas-turbine combustors.


2019 ◽  
Vol 878 ◽  
pp. 700-739 ◽  
Author(s):  
A. K. Aiyer ◽  
D. Yang ◽  
M. Chamecki ◽  
C. Meneveau

In the context of many applications of turbulent multi-phase flows, knowledge of the dispersed phase size distribution and its evolution is critical to predicting important macroscopic features. We develop a large eddy simulation (LES) model that can predict the turbulent transport and evolution of size distributions, for a specific subset of applications in which the dispersed phase can be assumed to consist of spherical droplets, and occurring at low volume fraction. We use a population dynamics model for polydisperse droplet distributions specifically adapted to a LES framework including a model for droplet breakup due to turbulence, neglecting coalescence consistent with the assumed small dispersed phase volume fractions. We model the number density fields using an Eulerian approach for each bin of the discretized droplet size distribution. Following earlier methods used in the Reynolds-averaged Navier–Stokes framework, the droplet breakup due to turbulent fluctuations is modelled by treating droplet–eddy collisions as in kinetic theory of gases. Existing models assume the scale of droplet–eddy collision to be in the inertial range of turbulence. In order to also model smaller droplets comparable to or smaller than the Kolmogorov scale we extend the breakup kernels using a structure function model that smoothly transitions from the inertial to the viscous range. The model includes a dimensionless coefficient that is fitted by comparing predictions in a one-dimensional version of the model with a laboratory experiment of oil droplet breakup below breaking waves. After initial comparisons of the one-dimensional model to measurements of oil droplets in an axisymmetric jet, it is then applied in a three-dimensional LES of a jet in cross-flow with large oil droplets of a single size being released at the source of the jet. We model the concentration fields using $N_{d}=15$ bins of discrete droplet sizes and solve scalar transport equations for each bin. The resulting droplet size distributions are compared with published experimental data, and good agreement for the relative size distribution is obtained. The LES results also enable us to quantify size distribution variability. We find that the probability distribution functions of key quantities such as the total surface area and the Sauter mean diameter of oil droplets are highly variable, some displaying strong non-Gaussian intermittent behaviour.


2010 ◽  
Vol 86 (3-4) ◽  
pp. 533-561 ◽  
Author(s):  
Ville Anton Vuorinen ◽  
Harri Hillamo ◽  
Ossi Kaario ◽  
Mika Nuutinen ◽  
Martti Larmi ◽  
...  

2017 ◽  
Vol 181 ◽  
pp. 1-15 ◽  
Author(s):  
Erdzan Hodzic ◽  
Mehdi Jangi ◽  
Robert-Zoltan Szasz ◽  
Xue-Song Bai

Author(s):  
David Dunham ◽  
Adrian Spencer ◽  
James J. McGuirk ◽  
Mehriar Dianat

It is well documented that various large-scale quasiperiodic flow structures, such as a precessing vortex core (PVC) and multiple vortex helical instabilities, are present in the swirling flows typical of air swirl fuel injectors. Prediction of these phenomena requires time-resolved computational methods. The focus of the present work was to compare the performance and cost implications of two computational fluid dynamics (CFD) methodologies—unsteady Reynolds averaged Navier–Stokes (URANS) using a k-ε model and large eddy simulation (LES) for such flows. The test case was a single stream radial swirler geometry, which has been the subject of extensive experimental investigation. Both approaches captured the gross (time-mean) features of strongly swirling confined flows in reasonable agreement with experiment. The temporal dynamics of the quadruple vortex pattern emanating from within the swirler and observed experimentally were successfully predicted by LES, but not by URANS. Spectral analysis of two flow configurations (with and without a central jet) revealed various coherent frequencies embedded within the broadband turbulent frequency range. LES reproduced these characteristics, in excellent agreement with experimental data, whereas URANS predicted the presence of coherent motions but at incorrect amplitudes and frequencies. For the no-jet case, LES-predicted spectral data indicated the occurrence of a PVC, which was also observed experimentally for this flow condition; the URANS solution failed to reproduce this measured trend. On the evidence of this study, although k-ε based URANS offers considerable computational savings, its inability to capture the temporal characteristics of the flows studied here sufficiently accurately suggests that only LES-based CFD, which captures the stochastic nature of the turbulence much more faithfully, is to be recommended for fuel injector flows.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3360
Author(s):  
Mahmoud Gadalla ◽  
Jeevananthan Kannan ◽  
Bulut Tekgül ◽  
Shervin Karimkashi ◽  
Ossi Kaario ◽  
...  

In this study, various mixing and evaporation modeling assumptions typically considered for large-eddy simulation (LES) of the well-established Engine Combustion Network (ECN) Spray A are explored. A coupling between LES and Lagrangian particle tracking (LPT) is employed to simulate liquid n-dodecane spray injection into hot inert gaseous environment, wherein Lagrangian droplets are introduced from a small cylindrical injection volume while larger length scales within the nozzle diameter are resolved. This LES/LPT approach involves various modeling assumptions concerning the unresolved near-nozzle region, droplet breakup, and LES subgrid scales (SGS) in which their impact on common spray metrics is usually left unexplored despite frequent utilization. Here, multi-parametric analysis is performed on the effects of (i) cylindrical injection volume dimensions, (ii) secondary breakup model, particularly Kelvin–Helmholtz Rayleigh–Taylor (KHRT) against a no-breakup model approach, and (iii) LES SGS models, particularly Smagorinsky and one-equation models against implicit LES. The analysis indicates the following findings: (i) global spray characteristics are sensitive to radial dimension of the cylindrical injection volume, (ii) the no-breakup model approach performs equally well, in terms of spray penetration and mixture formation, compared with KHRT, and (iii) the no-breakup model is generally insensitive to the chosen SGS model for the utilized grid resolution.


Sign in / Sign up

Export Citation Format

Share Document