scholarly journals Transient Ignition of Premixed Methane/Air Mixtures by a Pre-chamber Hot Jet: a DNS Study

Author(s):  
Cheng Chi ◽  
Abouelmagd Abdelsamie ◽  
Dominique Thévenin

AbstractThe present study investigates the transient processes controlling ignition by a hot jet issued from a pre-chamber. Direct numerical simulations (DNS) have been performed to study the characteristics of the turbulent jet flow and of the associated flame during the whole ignition process, quantifying the relevant physicochemical interactions between pre-chamber and main chamber. Thanks to a detailed analysis of the DNS results, the transient ignition is found to consist of three main sequential processes: (1) near-orifice local ignition in the main chamber; (2) further flame development supported by the jet flow; and (3) global ignition and propagation of a self-sustained flame in the main chamber, independently from the hot jet. The characteristic time-scale of the hot jet as well as jet-induced effects (local enrichment, supply of radicals and heat) are found to be essential for successful ignition in the main chamber. A more intense turbulence in the main chamber appears to support local ignition. However, it also induces local quenching, thus delaying global ignition. An ignition threshold based on a critical Damköhler number is a promising concept, but is not sufficient to describe the process in all its complexity.

1964 ◽  
Vol 15 (1) ◽  
pp. 1-28 ◽  
Author(s):  
R. Knystautas

SummaryThe possibility of obtaining two-dimensional turbulent jet flow from a series of closely-spaced uniform holes in line has been investigated both theoretically and experimentally. The case studied was that of a jet discharging into still fluid of similar density at incompressible speeds. Such a quasi-two-dimensional jet is a particular example of a multiple-interfering jet group.


2006 ◽  
Vol 13 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Y. I. Troitskaya ◽  
O. A. Druzhinin ◽  
D. A. Sergeev ◽  
V. V. Papko ◽  
G. N. Balandina

Abstract. The objective of the present paper is to develop a theoretical model describing the evolution of a turbulent wake behind a towed sphere in a stably stratified fluid at large Froude and Reynolds numbers. The wake flow is considered as a quasi two-dimensional (2-D) turbulent jet flow whose dynamics is governed by the momentum transfer from the mean flow to a quasi-2-D sinuous mode growing due to hydrodynamic instability. The model employs a quasi-linear approximation to describe this momentum transfer. The model scaling coefficients are defined with the use of available experimental data, and the performance of the model is verified by comparison with the results of a direct numerical simulation of a 2-D turbulent jet flow. The model prediction for the temporal development of the wake axis mean velocity is found to be in good agreement with the experimental data obtained by Spedding (1997).


Author(s):  
Dustin Weaver ◽  
Sanja Miskovic

Abstract In this paper, coupled CFD-DEM simulations of dense particle-laden jet flow are performed using CFDEM® coupling interface that couples LAMMPS-based LIGGGHTS® DEM engine with OpenFOAM CFD framework. Suspensions of mono-sized spherical glass particles with 80 microns diameter and a mass loading of 0.23 and 0.86 are considered. Three different CFD meshes are used with an average mesh resolution dimension of 3.06, 2.67, and 1.86 particle diameters and it is determined that mesh resolution does not change results for void fraction calculation (using the divided model) of the CFD-DEM equations. Samples of particle flux are taken at 0.1, 10, and 20 nozzle diameters along the axial direction of the jet region. The numerical results for particle flux are compared with a well cited experimental data found in literature. The CFD-DEM simulations in turbulent jet flow are found to be highly sensitive to initial particle velocity inputs but the experimental data provide sufficient information to produce comparable results.


2012 ◽  
Vol 37 ◽  
pp. 57-64 ◽  
Author(s):  
A.M. Soliman ◽  
Mohy S. Mansour ◽  
Norbert Peters ◽  
Mohamed H. Morsy

Sign in / Sign up

Export Citation Format

Share Document