Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

2016 ◽  
Vol 361 (6) ◽  
Author(s):  
S. Samurović
2020 ◽  
Vol 494 (4) ◽  
pp. 5293-5297
Author(s):  
Duncan A Forbes ◽  
Bililign T Dullo ◽  
Jonah Gannon ◽  
Warrick J Couch ◽  
Enrichetta Iodice ◽  
...  

ABSTRACT Using deep g, r, i imaging from the VST Early-type GAlaxy Survey (VEGAS), we have searched for ultradiffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify nine galaxies with physical sizes and surface brightnesses that match the UDG criteria within our measurement uncertainties. They have mean colours of g − i = 0.6 and stellar masses of ∼108 M⊙. Several galaxies appear to have associated systems of compact objects, e.g. globular clusters. Two UDGs contain a central bright nucleus, with a third UDG revealing a remarkable double nucleus. This appears to be the first reported detection of a double nucleus in a UDG – its origin is currently unclear.


2019 ◽  
Vol 14 (S351) ◽  
pp. 108-111
Author(s):  
Katja Fahrion ◽  
Mariya Lyubenova ◽  
Glenn van de Ven ◽  
Michael Hilker

AbstractNuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxy’s central gas reservoir, through merging of globular clusters (GCs), or through a combination of the two. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC, and GCs simultaneously. Wide-field observations with modern integral field units such as the Multi Unit Spectroscopic Explorer (MUSE) allow to perform such studies. However, at large distances, NSCs usually are not resolved in MUSE observations. The particularly large NSC (Reff ∼ 66 pc) of the early-type galaxy FCC 47 at distance of ∼20 Mpc is an exception and is therefore an ideal laboratory to constrain NSC formation of external galaxies.


2013 ◽  
Vol 773 (2) ◽  
pp. L36 ◽  
Author(s):  
Janet E. Colucci ◽  
María Fernanda Durán ◽  
Rebecca A. Bernstein ◽  
Andrew McWilliam

2016 ◽  
pp. 9-20 ◽  
Author(s):  
S. Samurovic

We study the well-known nearby early-type galaxy NGC 5128 (Centaurus A) and use the sample of its globular clusters to analyze its dynamics. We study both Newtonian and MOND models assuming three cases of orbital anisotropies: isotropic case, mildly tangentially anisotropic case and the radially anisotropic case based on the literature. We find that there are two regions with different values of the velocity dispersion: interior to ~ 3 effective radii the value of the velocity dispersion is approximately 150 km s?1 , whereas beyond ~ 3 effective radii its value increases to approximately 190 km s?1 , thus implying the increase of the total cumulative mass which is indicative of the existence of dark matter there in the Newtonian approach: the mass-to-light increases from M/LB = 7 in the inner regions to M/LB = 26 in the outer regions. We found that the Navarro-Frenk-White (NFW) model with dark halo provides good description of the dynamics of NGC 5128. Using three MOND models (standard, simple and toy), we find that they all provide good fits to the velocity dispersion of NGC 5128 and that no additional dark component is needed in MOND.


2019 ◽  
Vol 872 (2) ◽  
pp. 202 ◽  
Author(s):  
Youkyung Ko ◽  
Myung Gyoon Lee ◽  
Hong Soo Park ◽  
Sungsoon Lim ◽  
Jubee Sohn ◽  
...  

2008 ◽  
pp. 1-7
Author(s):  
S. Samurovic ◽  
M.M. Cirkovic

In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC 4649 (M60) is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC 4649 and the tracer mass estimator (TME) which uses globular clusters (GCs) observed in this galaxy. The mass is calculated in Newtonian and Modified Newtonian Dynamics (MOND) approaches and it is found that inside 3 effective radii (Re ) there is no need for large amounts of dark matter. Beyond 3Re the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC 4649 are also discussed.


2014 ◽  
pp. 29-36 ◽  
Author(s):  
S. Samurovic ◽  
A. Vudragovic ◽  
M. Jovanovic ◽  
M.M. Cirkovic

In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs) and planetary nebulae (PNe). We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component.


2019 ◽  
Vol 879 (1) ◽  
pp. 45 ◽  
Author(s):  
Alexa Villaume ◽  
Aaron J. Romanowsky ◽  
Jean Brodie ◽  
Jay Strader

2015 ◽  
Vol 11 (S317) ◽  
pp. 190-196 ◽  
Author(s):  
Jean P. Brodie ◽  
Aaron Romanowsky ◽  

AbstractWe use the kinematics of discrete tracers, primarily globular clusters (GCs) and planetary nebulae (PNe), along with measurements of the integrated starlight to explore the assembly histories of early type galaxies. Data for GCs and stars are taken from the SLUGGS wide field, 2-dimensional, chemo-dynamical survey (Brodie et al. 2014). Data for PNe are from the PN.S survey (see contributions by Gerhard and by Arnaboldi, this volume). We find widespread evidence for 2-phase galaxy assembly and intriguing constraints on hierarchical merging under a lambda CDM cosmology.


Sign in / Sign up

Export Citation Format

Share Document