A Stringent Limit on Variation of the Fine-Structure Constant Using Absorption Line Multiplets in the Early Universe

Astrophysics ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 285-291 ◽  
Author(s):  
T. D. Le
Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 722 ◽  
Author(s):  
T. D. Le

A new stringent limit relating to the variation of the fine-structure constant (α= e2/4πε0ℏc) has been extracted from Ritz wavelengths of 27 quasi_stellar object (QSO) absorption spectra lines of Fe II. The calculation was combined with laboratory wavelengths and QSO spectra to obtain the result ∆α/α=(0.027±0.832)×10-6. This result suggests how dedicated astrophysical estimations can improve these limits in the future and can also constrain space_time variations.


2001 ◽  
Vol 64 (10) ◽  
Author(s):  
P. P. Avelino ◽  
S. Esposito ◽  
G. Mangano ◽  
C. J. A. P. Martins ◽  
A. Melchiorri ◽  
...  

2016 ◽  
Vol 94 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Cláudio Nassif ◽  
A.C. Amaro de Faria

We investigate how the universal constants, including the fine structure constant, have varied since the early universe close to the Planck energy scale (EP ∼ 1019 GeV) and, thus, how they have evolved over the cosmological time related to the temperature of the expanding universe. According to a previous paper (Nassif and Amaro de Faria, Jr. Phys. Rev. D, 86, 027703 (2012). doi:10.1103/PhysRevD.86.027703), we have shown that the speed of light was much higher close to the Planck scale. In the present work, we will go further, first by showing that both the Planck constant and the electron charge were also too large in the early universe. However, we conclude that the fine structure constant (α ≅ 1/137) has remained invariant with the age and temperature of the universe, which is in agreement with laboratory tests and some observational data. Furthermore, we will obtain the divergence of the electron (or proton) mass and also the gravitational constant (G) at the Planck scale. Thus, we will be able to verify the veracity of Dirac’s belief about the existence of “coincidences” between dimensionless ratios of subatomic and cosmological quantities, leading to a variation of G with time, that is, the ratio of the electrostatic to gravitational forces between an electron and a proton (∼1041) is roughly equal to the age of the universe divided by an elementary time constant, so that the strength of gravity, as determined by G, must vary inversely with time in the approximation of lower temperature or for times very far from the early period, to compensate for the time-variation of the Hubble parameter (H ∼ t−1). In short, we will show the validity of Dirac’s hypothesis only for times very far from the early period or T ≪ TP (∼1032 K).


2015 ◽  
Vol 93 (12) ◽  
pp. 1551-1554
Author(s):  
Cláudio Nassif ◽  
A.C. Amaro de Faria

Our goal is to interpret the energy equation from doubly special relativity of Magueijo–Smolin with an invariant Planck energy scale to obtain the speed of light with an explicit dependence on the background temperature of the expanding universe (Nassif and de Faria. Phys. Rev. D, 86, 027703 (2012). doi:10.1103/PhysRevD.86.027703 ). We also investigate how other universal constants, including the fine structure constant, have varied since the early universe and, thus, how they have evolved over the cosmological time related to the temperature of the expanding universe. For instance, we show that both the Planck constant and the electron charge were also too large in the early universe. However, we finally conclude that the fine structure constant has remained invariant with the age and temperature of the universe, which is in agreement with laboratory tests and some observational data.


2007 ◽  
Vol 478 (3) ◽  
pp. 675-684 ◽  
Author(s):  
M. E. Mosquera ◽  
C. G. Scóccola ◽  
S. J. Landau ◽  
H. Vucetich

2009 ◽  
Vol 5 (H15) ◽  
pp. 317-317
Author(s):  
P. Petitjean ◽  
P. Noterdaeme ◽  
R. Srianand ◽  
C. Ledoux ◽  
A. Ivanchik ◽  
...  

AbstractIt has been realised in the last few years that strong constraints on the time-variations of dimensionless fundamental constants of physics can be derived at any redshift from QSO absorption line systems. Variations of the fine structure constant, α, the proton-to-electron mass ratio, μ, or the combination, x=α2gp/μ, where gp is the proton gyromagnetic factor, have been constrained. However, for the latter two constants, the number of lines of sight where these measurements can be performed is limited. In particular the number of known molecular and 21 cm absorbers is small. Our group has started several surveys to search for these systems. Here is a summary of some of the characteristics of these absorbers that can be used to find these systems.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


Sign in / Sign up

Export Citation Format

Share Document