scholarly journals Algorithm selection for software validation based on graph kernels

2020 ◽  
Vol 27 (1-2) ◽  
pp. 153-186
Author(s):  
Cedric Richter ◽  
Eyke Hüllermeier ◽  
Marie-Christine Jakobs ◽  
Heike Wehrheim
2008 ◽  
Vol 32 ◽  
pp. 565-606 ◽  
Author(s):  
L. Xu ◽  
F. Hutter ◽  
H. H. Hoos ◽  
K. Leyton-Brown

It has been widely observed that there is no single "dominant" SAT solver; instead, different solvers perform best on different instances. Rather than following the traditional approach of choosing the best solver for a given class of instances, we advocate making this decision online on a per-instance basis. Building on previous work, we describe SATzilla, an automated approach for constructing per-instance algorithm portfolios for SAT that use so-called empirical hardness models to choose among their constituent solvers. This approach takes as input a distribution of problem instances and a set of component solvers, and constructs a portfolio optimizing a given objective function (such as mean runtime, percent of instances solved, or score in a competition). The excellent performance of SATzilla was independently verified in the 2007 SAT Competition, where our SATzilla07 solvers won three gold, one silver and one bronze medal. In this article, we go well beyond SATzilla07 by making the portfolio construction scalable and completely automated, and improving it by integrating local search solvers as candidate solvers, by predicting performance score instead of runtime, and by using hierarchical hardness models that take into account different types of SAT instances. We demonstrate the effectiveness of these new techniques in extensive experimental results on data sets including instances from the most recent SAT competition.


2021 ◽  
Author(s):  
Niranjana Deshpande ◽  
Naveen Sharma ◽  
Qi Yu ◽  
Daniel E. Krutz

2014 ◽  
Vol 63 (8) ◽  
pp. 3875-3891 ◽  
Author(s):  
Albert Banchs ◽  
Antonio de la Oliva ◽  
Lucas Eznarriaga ◽  
Dariusz R. Kowalski ◽  
Pablo Serrano

Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 353 ◽  
Author(s):  
Tran Phuc ◽  
Changhoon Lee

BM123-64 block cipher, which was proposed by Minh, N.H. and Bac, D.T. in 2014, was designed for high speed communication applications factors. It was constructed in hybrid controlled substitution–permutation network (CSPN) models with two types of basic controlled elements (CE) in distinctive designs. This cipher is based on switchable data-dependent operations (SDDO) and covers dependent-operations suitable for efficient primitive approaches for cipher constructions that can generate key schedule in a simple way. The BM123-64 cipher has advantages including high applicability, flexibility, and portability with different algorithm selection for various application targets with internet of things (IoT) as well as secure protection against common types of attacks, for instance, differential attacks and linear attacks. However, in this paper, we propose methods to possibly exploit the BM123-64 structure using related-key attacks. We have constructed a high probability related-key differential characteristics (DCs) on a full eight rounds of BM123-64 cipher. The related-key amplified boomerang attack is then proposed on all three different cases of operation-specific designs with effective results in complexity of data and time consumptions. This study can be considered as the first cryptographic results on BM123-64 cipher.


Sign in / Sign up

Export Citation Format

Share Document