scholarly journals Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration

2005 ◽  
Vol 3 (1) ◽  
pp. 1-53 ◽  
Author(s):  
N. N. Ambraseys ◽  
J. Douglas ◽  
S. K. Sarma ◽  
P. M. Smit
2013 ◽  
Vol 353-356 ◽  
pp. 1934-1940
Author(s):  
Hai Ming Liu ◽  
Xia Xin Tao ◽  
Li Yuan Wang ◽  
Wei Jiang

The ground motions on two dam sites during the great Wenchuan earthquake with magnitude 8.0, motions are synthesized from 30 finite fault based hybrid source models and inversed regional parameters of source spectrum and motion attenuation. The results show that the peak ground acceleration values are less than those estimated directly from the Intensities Ⅹ and Ⅺ at the two sites, with mean values 259 and 716 gals. The motion at Shapai is much stronger than that at Zipingpu, and the spectrum is also wider than the latter, but the corresponding duration is shorter during the earthquake.


2021 ◽  
Vol 11 (15) ◽  
pp. 7041
Author(s):  
Baoyintu Baoyintu ◽  
Naren Mandula ◽  
Hiroshi Kawase

We used the Green’s function summation method together with the randomly perturbed asperity sources to sum up broadband statistical Green’s functions of a moderate-size source and predict strong ground motions due to the expected M8.1 to 8.7 Nankai-Trough earthquakes along the southern coast of western Japan. We successfully simulated seismic intensity distributions similar to the past earthquakes and strong ground motions similar to the empirical attenuation relations of peak ground acceleration and velocity. Using these results, we predicted building damage by non-linear response analyses and find that at the regions close to the source, as well as regions with relatively thick, soft sediments such as the shoreline and alluvium valleys along the rivers, there is a possibility of severe damage regardless of the types of buildings. Moreover, the predicted damage ratios for buildings built before 1981 are much higher than those built after because of the significant code modifications in 1981. We also find that the damage ratio is highest for steel buildings, followed by wooden houses, and then reinforced concrete buildings.


2020 ◽  
Vol 18 (1) ◽  
pp. 122-135
Author(s):  
Abdellah Boudina ◽  
Malek Hammoutene

Purpose This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude, epicentral distance and type of soil. This study is necessary for the non-linear dynamic analysis of structures in regions where real seismic records are not available. Design/methodology/approach First, a stochastic iterative method is used to estimate the spectral densities of acceleration power from the respective target response spectra. Thereafter, based on the superposition of seismic waves, a subsequent iterative procedure, which implicitly takes into account the non-stationary character of temporal intensity content of strong ground motions, is developed to synthesize, from these power spectral density, the corresponding acceleration time histories. The phase contents of the ground acceleration samples, thus obtained, are generated using a probability density function of phase derivatives with characteristic parameters estimated from seismological considerations. When based on seismic codes spectrum compatible criteria, this procedure can be used to generate strong ground motions for structural design. Findings The results found show that the forms of acceleration of the target and the simulated signals have similar characteristics in terms of strong motion durations, the peak ground acceleration values, corresponding time of occurrence and also, the corresponding cumulative energy functions follow practically the same pattern of variations. Originality/value The aim of this study is to generate seismic accelerograms compatible with regulatory spectra by the composition of the three acceleration duration segments based on environmental parameters (magnitude, epicentral distance and type of soil) and which subsequently serves to control the time envelope of the generated signals, and therefore the random generation of phase derivatives, which has not been previously treated.


2003 ◽  
Vol 19 (3) ◽  
pp. 511-529 ◽  
Author(s):  
John E. Ebel ◽  
David J. Wald

We describe a new probabilistic method that uses observations of modified Mercalli intensity (MMI) from past earthquakes to make quantitative estimates of ground shaking parameters (i.e., peak ground acceleration, peak ground velocity, 5% damped spectral acceleration values, etc.). The method uses a Bayesian approach to make quantitative estimates of the probabilities of different levels of ground motions from intensity data given an earthquake of known location and magnitude. The method utilizes probability distributions from an intensity/ground motion data set along with a ground motion attenuation relation to estimate the ground motion from intensity. The ground motions with the highest probabilities are the ones most likely experienced at the site of the MMI observation. We test the method using MMI/ground motion data from California and published ground motion attenuation relations to estimate the ground motions for several earthquakes: 1999 Hector Mine, California (M7.1); 1988 Saguenay, Quebec (M5.9); and 1982 Gaza, New Hampshire (M4.4). In an example where the method is applied to a historic earthquake, we estimate that the peak ground accelerations associated with the 1727 (M∼5.2) earthquake at Newbury, Massachusetts, ranged from 0.23 g at Newbury to 0.06 g at Boston.


Sign in / Sign up

Export Citation Format

Share Document