In vitro and in vivo antifungal activity of crude extracts and powdered dry material from Ethiopian wild plants against economically important plant pathogens

BioControl ◽  
2007 ◽  
Vol 52 (6) ◽  
pp. 877-888 ◽  
Author(s):  
Girma Tegegne ◽  
Johan C. Pretorius
Author(s):  
Janet Herrada ◽  
Ahmed Gamal ◽  
Lisa Long ◽  
Sonia P. Sanchez ◽  
Thomas S. McCormick ◽  
...  

Antifungal activity of AmBisome against Candida auris was determined in vitro and in vivo. AmBisome showed MIC50 and MIC90 values of 1 and 2 μg/mL, respectively. Unlike conventional amphotericin B, significant in vivo efficacy was observed in the AmBisome 7.5 mg/kg -treated group in survival and reduction of kidney tissue fungal burden compared to the untreated group. Our data shows that AmBisome shows significant antifungal activity against C. auris in vitro as well as in vivo.


2020 ◽  
Vol 154 ◽  
pp. 112745
Author(s):  
Qiong Yang ◽  
Jiao Wang ◽  
Peng Zhang ◽  
Shengnan Xie ◽  
Xiaolong Yuan ◽  
...  

2015 ◽  
pp. 1563-1570 ◽  
Author(s):  
Idriss Talibi ◽  
Latifa Askarne ◽  
Hassan Boubaker ◽  
El Hassane Boudyach ◽  
Abdellah Ait Ben Oumar

2013 ◽  
Vol 33 ◽  
pp. 40-46 ◽  
Author(s):  
Claudia Fieira ◽  
Francieli Oliveira ◽  
Rubens Perez Calegari ◽  
Alessandra Machado ◽  
Alexandre Rodrigo Coelho

2020 ◽  
Vol 13 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.D. Gong ◽  
G.J. Sun ◽  
Z.Y. Zhao ◽  
Y.C. Liao ◽  
J.B. Zhang

Controlling proliferation and aflatoxin production by Aspergillus flavus is a pressing challenge for global food safety and security. Marine bacterium Staphylococcus saprophyticus strain L-38 showed excellent antifungal activity toward A. flavus in vitro and in vivo. In sealed, non-contact confrontation assays, L-38 completely inhibited conidial germination and mycelial growth of A. flavus through the production of volatile organic compounds (VOCs). Gas chromatography-mass spectrometry identified 3,3-dimethyl-1,2-epoxybutane (3-DE) as the most abundant VOC (32.61% of total peak area, 78% matching). Exposure of A. flavus cultures to synthetic 3-DE similarly demonstrated strong inhibition of growth. Moreover, culture of L-38 in a sealed chamber with maize or peanuts artificially inoculated with A. flavus, at high water activity, resulted in significant inhibition of A. flavus germination and aflatoxin biosynthesis. Scanning electron microscopy of these samples revealed severe damage to conidial cells and hyphae compared to samples not exposed to L-38. L-38 also showed broad and effective antifungal activity toward eight other phytopathogenic fungi including Aspergillus niger, Fusarium verticillioides, Fusarium graminearum, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria alternata, Monilinia fructicola, and Botrytis cinerea. This work introduces S. saprophyticus L-38 as a potential biocontrol agent and demonstrates the efficacy of the volatile 3-DE in the control of A. flavus and other destructive plant pathogens for post-harvest food safety.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S471-S472
Author(s):  
Emily Larkin ◽  
Lisa Long ◽  
Christopher Hager ◽  
Karen Joy Shaw ◽  
Mahmoud Ghannoum

Sign in / Sign up

Export Citation Format

Share Document