organic extracts
Recently Published Documents





2023 ◽  
Vol 83 ◽  
A. G. Toledo ◽  
J. G. de L. de Souza ◽  
C. B. Santana ◽  
A. P. Mallmann ◽  
C. V. dos Santos ◽  

Abstract The species Eugenia involucrata DC. is a plant native to Brazil and is traditionally used for intestinal problems, however, little research has documented about its biological potential and phytochemical profile. Thus, the objective of this study was to carry out preliminary phytochemical prospecting, antimicrobial and antioxidant potential of E. involucrata extracts. Using the E. involucrata leaves, aqueous and organic extracts were obtained using the following solvents (ethanol, methanol, hexane, acetone, dichloromethane and ethyl acetate). The phytochemical prospecting detected the presence of saponins, steroids, flavonoids and tannins in the extracts. Ethanolic and methanolic extracts presented antimicrobial activity for most of the bacterial strains tested, as well as for yeast Candida albicans, with concentrations between 3.12 and 50 mg/mL. The ethanolic and metanolic extract presented high free radical sequestration potential (>90%). The methanol extract showed an IC50 value statistically equal to that found for the commercial antioxidant BHT (p <0.05). The crude extracts obtained with ethanol and methanol were the most promising. These results suggest that methanolic, ethanolic and aqueous extracts are a promising source of natural bioactive.

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Thierry Roland Kang ◽  
Jerome Nyhalah Dinga ◽  
Ayuk Elizabeth Orock ◽  
Elvis Monya ◽  
Moses Njutain Ngemenya

Onchocerciasis is a parasitic infection affecting a relatively small population globally but has very devastating pathological outcomes. Ivermectin and recently moxidectin are the only drugs approved for clinical management of the disease, both of which have several limitations. In particular, they are efficacious against microfilariae (microfilaricidal) with no activity against adult worms (nonmacrofilaricidal). Promising anthelmintic activity has been reported in some lichens. This study investigated three lichens, Usnea articulata, Parmotrema tinctorum, and Heterodermia obscurata, found on Mount Cameroon, for potential macrofilaricidal activity. Organic extracts were screened for anti-Onchocerca activity against Onchocerca ochengi isolated from cattle skin using worm motility and MTT formazan assays. Toxicity of highly active extracts was investigated on monkey kidney epithelial (LLCMK2) cells and in BALB/c mice (2000 mg/kg body weight) including effects on liver enzymes. The methanol extract of P. tinctorum (Pammet) was the most active against adult male worms ( I C 50 = 8.1  μg/mL) with the highest selectivity index ( SI = 21.3 ). U. articulata was the most active against the adult female ( I C 50 = 36.3  μg/mL) but had a low SI value (3.4). No mortality and no adverse effects were recorded in the acute toxicity test. These two most active extracts had no significant effect on liver enzymes, alanine aminotransferase, and aspartate ( P values < 0.05), but a high AST : ALT ratio (2.59) for Pammet indicates likely reversible adverse hepatic toxicity. The high macrofilaricidal activity and selectivity of P. tinctorum suggest it is a potential source of new macrofilaricides which should be further investigated to identify its bioactive constituents.

2022 ◽  
Vol 8 (1) ◽  
pp. 55
Pierluigi Reveglia ◽  
Maria Luisa Raimondo ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
Genoveffa Nuzzo ◽  

Grapevine (Vitis vinifera L.) can be affected by many different biotic agents, including tracheomycotic fungi such as Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are the main causal agent of Esca and Petri diseases. Both fungi produce phytotoxic naphthalenone polyketides, namely scytalone and isosclerone, that are related to symptom development. The main objective of this study was to investigate the secondary metabolites produced by three Phaeoacremonium species and to assess their phytotoxicity by in vitro bioassay. To this aim, untargeted and targeted LC-MS/MS-based metabolomics were performed. High resolution mass spectrometer UHPLC-Orbitrap was used for the untargeted profiling and dereplication of secondary metabolites. A sensitive multi reaction monitoring (MRM) method for the absolute quantification of scytalone and isosclerone was developed on a UPLC-QTrap. Different isolates of P. italicum, P. alvesii and P. rubrigenum were grown in vitro and the culture filtrates and organic extracts were assayed for phytotoxicity. The toxic effects varied within and among fungal isolates. Isosclerone and scytalone were dereplicated by matching retention times and HRMS and MS/MS data with pure standards. The amount of scytalone and isosclerone differed within and among fungal species. To our best knowledge, this is the first study that applies an approach of LC-MS/MS-based metabolomics to investigate differences in the metabolic composition of organic extracts of Phaeoacremonium species culture filtrates.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 150
Norely Vargas-Morales ◽  
Norma Elizabeth Moreno-Anzúrez ◽  
Janeth Téllez-Román ◽  
Irene Perea-Arango ◽  
Susana Valencia-Díaz ◽  

A histological analysis was performed with the aim of elucidating the spontaneous regeneration process of the hairy root lines LRT 2.3 and LRT 6.4, derived from Lopezia racemosa leaf explants and genetically transformed with the Agrobacterium rhizogenes strain ATCC15834/pTDT. The analysis showed both lines regenerate via indirect somatic embryogenesis; LRT 6.4 also regenerated by direct organogenesis. The morphogenic characteristics of the regenerated plantlets from both lines showed the typical characteristics, described previously, including a higher number of axillary shoot formation, short internodes, and plagiotropic roots compared with wild-type seedlings. The regeneration process occurred without the addition of plant growth regulators and was linked to the sucrose concentration in the culture medium. Reducing the sucrose concentration from 3% to 2%, 1%, and 0.5% increased the regeneration rate in LRT 6.4; the effect was less pronounced in LRT 2.3. The cytotoxic activity of different organic extracts obtained from roots and shoots were evaluated in the cancer cell lines HeLa (cervical carcinoma), HCT-15 (colon adenocarcinoma), and OVCAR (ovary carcinoma). The hexane and dichloromethane extracts from roots of both lines showed cytotoxic activity against the HeLa cell line. Only the dichloromethane extract from the roots of PLRT 2.3 showed cytotoxic activity against the OVCAR cell line. None of the methanol extracts showed cytotoxic activity, nor the shoot extracts from any solvent.

2021 ◽  
Vol 2 (4) ◽  
pp. 34-39
Hafza Murtaza ◽  
Aasia Sikander ◽  
Umema Murtaza ◽  
Ashir Masroor ◽  
Filza Ghafoor

In this study, various leaves and stem organic extracts were prepared using the solvents viz., n-hexane, ethyl acetate, ethanol and water, separately. Different phytochemical test for alkaloids, carbohydrates, oils, amino acids and others were performed to determine their presence in the extracts. These plant extracts were used for screening of sample via UV and HPLC techniques to compare the wavelength and absorbance, and retention time on chromatogram by extracts, respectively. The surface properties and size of nickel-zinc nano ferrites were evaluated by Energy-dispersive X-ray spectroscopy (EDX) and Scanning Electron Microscopy (SEM). The former, showed the presence of nickel (Ni) and zinc (Zn) weighing 4.27⁒ of N ,6.89⁒ of C and 35.5⁒ of O in the sample which confirmed the presence of nano ferrites in leaves and stem of C. buchanani.

2021 ◽  
Vol 940 (1) ◽  
pp. 012090
T G P Utami ◽  
A Setiawan ◽  
N L G R Juliasih

Abstract This study aimed to screen the activity of methanol extract of sponge-derived actinomycetes as an anti-biofilm and antibacterial agent to Staphylococcus aureus. Nine actinomycetes isolates were selected from the UPT LTSIT deposit. S. aureus was obtained from the skin of patients at Abdul Moeloek General Hospital. An antibiotic susceptibility test was performed by the disk diffusion method. Biofilm formation of S. aureus was tested using the crystal violet method. The viability of pathogenic bacteria was measured using the indicator resazurin. The results of the biofilm formation test in vitro revealed that the organic extracts 33A1T2, 33A2T3, 21A1T11, and 38A1T12 inhibited bacterial growth at 0.5 mg/mL. Meanwhile, 50A2T9, 21A1T11, and 38A1T12 significantly inhibited the formation of staphylococcal biofilm on polystyrene at a concentration of 0.25 mg/mL. This information is very important as a basis for further understanding of the mechanism of action of antibiofilm agents.

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 686
Diana Lopes ◽  
Felisa Rey ◽  
Miguel C. Leal ◽  
Ana I. Lillebø ◽  
Ricardo Calado ◽  

While complex lipids of seaweeds are known to display important phytochemical properties, their full potential is yet to be explored. This review summarizes the findings of a systematic survey of scientific publications spanning over the years 2000 to January 2021 retrieved from Web of Science (WoS) and Scopus databases to map the state of the art and identify knowledge gaps on the relationship between the complex lipids of seaweeds and their reported bioactivities. Eligible publications (270 in total) were classified in five categories according to the type of studies using seaweeds as raw biomass (category 1); studies using organic extracts (category 2); studies using organic extracts with identified complex lipids (category 3); studies of extracts enriched in isolated groups or classes of complex lipids (category 4); and studies of isolated complex lipids molecular species (category 5), organized by seaweed phyla and reported bioactivities. Studies that identified the molecular composition of these bioactive compounds in detail (29 in total) were selected and described according to their bioactivities (antitumor, anti-inflammatory, antimicrobial, and others). Overall, to date, the value for seaweeds in terms of health and wellness effects were found to be mostly based on empirical knowledge. Although lipids from seaweeds are little explored, the published work showed the potential of lipid extracts, fractions, and complex lipids from seaweeds as functional ingredients for the food and feed, cosmeceutical, and pharmaceutical industries. This knowledge will boost the use of the chemical diversity of seaweeds for innovative value-added products and new biotechnological applications.

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 675
Virginio Cepas ◽  
Ignacio Gutiérrez-Del-Río ◽  
Yuly López ◽  
Saúl Redondo-Blanco ◽  
Yaiza Gabasa ◽  

Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 661
Irene Torres-García ◽  
Josefa L. López-Martínez ◽  
Manuel Muñoz-Dorado ◽  
Ignacio Rodríguez-García ◽  
Miriam Álvarez-Corral

Organic extracts of marine invertebrates, mainly sponges, from seas all over the world are well known for their high in vitro anticancer and antibiotic activities which make them promising sources of compounds with potential use as pharmaceutical leads. Most of the structures discovered so far have a peculiar structural feature in common: a 1,2-dioxane ring. This is a highly reactive heterocycle that can be considered as an endoperoxide function. Together with other structural features, this group could be responsible for the strong biological activities of the substances present in the extracts. Numerous research programs have focused on their structural elucidation and total synthesis since the seventies. As a consequence, the number of established chiral centres and the similarity between different naturally occurring substances is increasingly higher. Most of these compounds have a terpenoid nature, mainly diterpene and sesterterpene, with several peculiar structural features, such as the loss of one carbon atom. Although there are many reviews dealing with the occurrence of marine peroxides, their activities, or potential pharmaceutical uses, no one has focused on those having a terpene origin and the endoperoxide function. We present here a comprehensive review of these compounds paying special attention to their structural features and their biological activity.

Sign in / Sign up

Export Citation Format

Share Document