aflatoxin production
Recently Published Documents


TOTAL DOCUMENTS

808
(FIVE YEARS 123)

H-INDEX

52
(FIVE YEARS 8)

2021 ◽  
pp. 1-16
Author(s):  
P. Chang ◽  
B. Tai ◽  
M. Zheng ◽  
Q. Yang ◽  
F. Xing

Aspergillus flavus causes huge crop losses, reduces crop quality and has adverse effects on human and animal health. A large amount of food contaminated with aflatoxin can greatly increase the risk of liver cancer. Therefore, prevention and control of aflatoxin production have aroused attention of research in various countries. Natamycin extracted from Streptomyces spp. has been widely used in production practice due to its good specificity and safety. Here, we found that natamycin could significantly inhibit fungal growth, conidia germination, ergosterol and AFB1 production by A. flavus in a dose-dependent manner. Scanning electron microscope analysis indicated that the number of conidia was decreased, the outer wall of conidia was destroyed, and the mycelia were shrivelled and tangled by natamycin. RNA-Seq data indicated that natamycin inhibited fungal growth and conidia development of A. flavus by significantly down-regulating some genes involved in ergosterol biosynthesis, such as Erg13, HMG1 and HMG2. It inhibited conidia germination by significantly down-regulating some genes related to conidia development, such as FluG and VosA. After natamycin exposure, the decreased ratio of aflS/aflR caused by the down-regulation of all the structural genes, which subsequently resulted in the suppression of AFB1 production. In conclusion, this study served to reveal the inhibitory mechanisms of natamycin on fungal growth and AFB1 biosynthesis in A. flavus and to provide solid evidence for its application in controlling AFB1 contamination.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2553
Author(s):  
Mario Alberto Segura-Palacios ◽  
Zormy Nacary Correa-Pacheco ◽  
Maria Luisa Corona-Rangel ◽  
Ollin Celeste Martinez-Ramirez ◽  
Dolores Azucena Salazar-Piña ◽  
...  

Aspergillus flavus affects fresh and dry fruit and vegetable products, and its toxic metabolites, namely aflatoxins, cause serious damage in humans. The objective of this research study was to evaluate the effect of commercial natural products as well as edible and nanostructured chitosan coatings on the development of A. flavus and on the production of aflatoxins in vitro and in tomato. Treatments were as follows: chitosan 1%, chitosan coating, chitosan nanostructured coating, Citrocover 1% (citrus seed extract), Resinadher 0.5% (pine resin extract), mancozeb 2%, and water. The variables were as follows: halo inhibition, spore production, and aflatoxins content. In fruit, the following were evaluated: disease incidence, mycelial growth, and aflatoxin production. An ANOVA (Tukey: p < 0.05) was used. In vitro results showed that Citrocover and Resinadher reduced sporulation (0.2 and 0.9 × 105 spores mL−1, respectively), while chitosan inhibited the production of aflatoxins. With Resinadher and Citrocover, tomato fruit had the lowest incidence, mycelial growth, and aflatoxin production with corresponding values of 0%, 0.0 cm2, and 0.95 ppb, respectively, and 7%, 0.2 cm2, and 1.77 ppb, respectively. The use of Citrocover and Resinadher could be a viable alternative to decrease the development of A. flavus in tomato fruit.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 831
Author(s):  
Kunzhi Jia ◽  
Lijuan Yan ◽  
Yipu Jia ◽  
Shuting Xu ◽  
Zhaoqi Yan ◽  
...  

Aspergillus flavus poses a threat to society economy and public health due to aflatoxin production. aflN is a gene located in the aflatoxin gene cluster, but the function of AflN is undefined in Aspergillus flavus. In this study, aflN is knocked out and overexpressed to study the function of AflN. The results indicated that the loss of AflN leads to the defect of aflatoxin biosynthesis. AflN is also found to play a role in conidiation but not hyphal growth and sclerotia development. Moreover, AlfN is related to the response to environmental oxidative stress and intracellular levels of reactive oxygen species. At last, AflN is involved in the pathogenicity of Aspergillus flavus to host. These results suggested that AflN played important roles in aflatoxin biosynthesis, conidiation and reactive oxygen species generation in Aspergillus flavus, which will be helpful for the understanding of aflN function, and will be beneficial to the prevention and control of Aspergillus flavus and aflatoxins contamination.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 794
Author(s):  
Rebecca R. Sweany ◽  
Brian M. Mack ◽  
Geromy G. Moore ◽  
Matthew K. Gilbert ◽  
Jeffrey W. Cary ◽  
...  

Aflatoxin is a carcinogenic mycotoxin produced by Aspergillus flavus. Non-aflatoxigenic (Non-tox) A. flavus isolates are deployed in corn fields as biocontrol because they substantially reduce aflatoxin contamination via direct replacement and additionally via direct contact or touch with toxigenic (Tox) isolates and secretion of inhibitory/degradative chemicals. To understand touch inhibition, HPLC analysis and RNA sequencing examined aflatoxin production and gene expression of Non-tox isolate 17 and Tox isolate 53 mono-cultures and during their interaction in co-culture. Aflatoxin production was reduced by 99.7% in 72 h co-cultures. Fewer than expected unique reads were assigned to Tox 53 during co-culture, indicating its growth and/or gene expression was inhibited in response to Non-tox 17. Predicted secreted proteins and genes involved in oxidation/reduction were enriched in Non-tox 17 and co-cultures compared to Tox 53. Five secondary metabolite (SM) gene clusters and kojic acid synthesis genes were upregulated in Non-tox 17 compared to Tox 53 and a few were further upregulated in co-cultures in response to touch. These results suggest Non-tox strains can inhibit growth and aflatoxin gene cluster expression in Tox strains through touch. Additionally, upregulation of other SM genes and redox genes during the biocontrol interaction demonstrates a potential role of inhibitory SMs and antioxidants as additional biocontrol mechanisms and deserves further exploration to improve biocontrol formulations.


Author(s):  
Hamidou Compaoré ◽  
Serge Samandoulougou ◽  
Clarisse S. Compaoré ◽  
Alima Bambara ◽  
Hissein Ratongué ◽  
...  

A total of four samples of rice intended for infant flour production in Ouagadougou were received at the Physico-chemistry laboratory of Food Technology Department (DTA) for quality control. The latter were also tested for Aspergillus section Flavi presence and analyzed for aflatoxins B1, B2, G1 and G2 content using high performance liquid chromatography (HPLC). Among the twenty (20) strains of mold isolated from these samples, three Aspergillus section Flavi were obtained and cultivated in “Aspergillus flavus and parasiticus Agar (AFPA)” to ascertain if they belong to Aspergillus flavus or Aspergillus parasiticus species. The qualitative ability of aflatoxin production was also performed by fluorescence emission under ultra violet light at 365 nm after four days of incubation at 30 °C on Coconut Agar Medium (CAM). Statistical analysis results showed that 75% of samples were contaminated with total aflatoxins (AFs) with contents ranging from 0.54 ± 0.06 to 2.40 ± 0.07 µg/Kg. Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) were detected in two contaminated samples. AFB1 had the highest concentration as compared with other aflatoxins. A significant level of contamination (p< 0.0001) was observed in sample R441 compared to other sample types.


2021 ◽  
Vol 7 (10) ◽  
pp. 833
Author(s):  
Francesca Degola ◽  
Giorgio Spadola ◽  
Marco Forgia ◽  
Massimo Turina ◽  
Lucia Dramis ◽  
...  

Microbial multi-level interactions are essential to control the success of spreading and survival of most microbes in natural environments. Phytopathogenic mycotoxigenic fungal species, such as Aspergillus flavus, represent an important issue in food safety. Usually, non-toxigenic strains are exploited for biocontrol strategies to mitigate infections by toxigenic strains. To comprehend all the biological variables involved in the aflatoxin biosynthesis, and to possibly evaluate the interplay between A. flavus toxigenic and non-toxigenic strains during intraspecific biocompetition, the “virological” perspective should be considered. For these reasons, investigations on mycoviruses associated to A. flavus populations inhabiting specific agroecosystems are highly desirable. Here, we provide the first accurate characterization of the novel mycovirome identified within an A. flavus wild population colonizing the maize fields of northern Italy: a selection of A. flavus strains was biologically characterized and subjected to RNAseq analysis, revealing new mycoviruses and a peculiar geographic pattern distribution in addition to a 20% rate of infection. More interestingly, a negative correlation between viral infection and aflatoxin production was found. Results significantly expanded the limited existent data about mycoviruses in wild A. flavus, opening new and intriguing hypotheses about the ecological significance of mycoviruses.


2021 ◽  
Vol 18 (116) ◽  
pp. 183-194
Author(s):  
Maryam Khamoushi ◽  
Mohammadreza Khani ◽  
Abdollah Ghasemi Pirbalouti ◽  
◽  
◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 687
Author(s):  
Vanja Vlajkov ◽  
Mila Grahovac ◽  
Dragana Budakov ◽  
Marta Loc ◽  
Ivana Pajčin ◽  
...  

Maize is one of the leading export products in the Republic of Serbia. As a country where economic development depends on agriculture, maize production plays a critical role as a crop of strategic importance. Potential aflatoxin contamination of maize poses a risk to food and feed safety and tremendous economic losses. No aflatoxin contamination of maize samples harvested in 2019 and 2020 in different localities in the Republic of Serbia was detected by the Enzyme-Linked Immunosorbent Assay (ELISA) test and High-Performance Liquid Chromatography (HPLC) method. On the other hand, the Cluster Amplification Patterns (CAP) analyses of the isolated Aspergillus flavus strains from 2019 maize samples confirmed the presence of key biosynthesis genes responsible for aflatoxin production. Artificial inoculation and subsequent HPLC analysis of the inoculated maize samples confirmed the high capacity of the A. flavus strains for aflatoxin production, pointing to a high risk of contamination under favorable conditions. Prevention of aflatoxin contamination is primarily based on A. flavus control, where biocontrol agents play a significant role as sustainable disease management tools. In this study, antagonistic activity screening of the novel strains belonging to the Bacillus genus indicated superior suppression of A. flavus strains by two Bacillus strains isolated from the rhizosphere of Phaseolus vulgaris.


Author(s):  
Génesis V. Buitimea-Cantúa ◽  
Elisa Magaña-Barajas ◽  
Nydia E. Buitimea-Cantúa ◽  
Héctor Manuel Leija Gutiérrez ◽  
María del Refugio Rocha-Pizaña ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdi Mohammed ◽  
Paola C. Faustinelli ◽  
Alemayehu Chala ◽  
Mashilla Dejene ◽  
Chemeda Fininsa ◽  
...  

Abstract Background Aspergillus species cause aflatoxin contamination in groundnut kernels, being a health threat in agricultural products and leading to commodity rejection by domestic and international markets. Presence of Aspergillus flavus and A. parasiticus colonizing groundnut in eastern Ethiopia, as well as presence of aflatoxins have been reported, though in this region, no genetic studies have been done of these species in relation to their aflatoxin production. Results In this study, 145 Aspergillus isolates obtained from groundnut kernels in eastern Ethiopia were genetically fingerprinted using 23 Insertion/Deletion (InDel) markers within the aflatoxin-biosynthesis gene cluster (ABC), identifying 133 ABC genotypes. Eighty-four isolates were analyzed by Ultra-Performance Liquid Chromatography (UPLC) for in vitro aflatoxin production. Analysis of genetic distances based on the approximately 85 kb-ABC by Neighbor Joining (NJ), 3D-Principal Coordinate Analysis (3D-PCoA), and Structure software, clustered the isolates into three main groups as a gradient in their aflatoxin production. Group I, contained 98% A. flavus, including L- and non-producers of sclerotia (NPS), producers of B1 and B2 aflatoxins, and most of them collected from the lowland-dry Babile area. Group II was a genetic admixture population of A. flavus (NPS) and A. flavus S morphotype, both low producers of aflatoxins. Group III was primarily represented by A. parasiticus and A. flavus S morphotype isolates both producers of B1, B2 and G1, G2 aflatoxins, and originated from the regions of Darolabu and Gursum. The highest in vitro producer of aflatoxin B1 was A. flavus NPS N1436 (77.98 μg/mL), and the highest producer of aflatoxin G1 was A. parasiticus N1348 (50.33 μg/mL), these isolates were from Gursum and Darolabu, respectively. Conclusions To the best of our knowledge, this is the first study that combined the use of InDel fingerprinting of the ABC and corresponding aflatoxin production capability to describe the genetic diversity of Aspergillus isolates from groundnut in eastern Ethiopia. Three InDel markers, AFLC04, AFLC08 and AFLC19, accounted for the main assignment of individuals to the three Groups; their loci corresponded to aflC (pksA), hypC, and aflW (moxY) genes, respectively. Despite InDels within the ABC being often associated to loss of aflatoxin production, the vast InDel polymorphism observed in the Aspergillus isolates did not completely impaired their aflatoxin production in vitro.


Sign in / Sign up

Export Citation Format

Share Document