Invasive macrophytes in a marine reserve (Columbretes Islands, NW Mediterranean): spread dynamics and interactions with the endemic scleractinian coral Cladocora caespitosa

Author(s):  
Diego K. Kersting ◽  
Enric Ballesteros ◽  
Sònia De Caralt ◽  
Cristina Linares
2018 ◽  
Vol 19 (3) ◽  
pp. 589 ◽  
Author(s):  
SIMONE MARIANI ◽  
OSCAR OCAÑA VICENTE ◽  
PAULA LÓPEZ-SENDINO ◽  
MARÍA GARCÍA ◽  
AURORA MARTÍNEZ RICART ◽  
...  

The zooxanthellate scleractinian coral Oulastrea crispata, a widely distributed species across central Indo-Pacific nearshore marine habitats, has been first reported from the Mediterranean Sea (Corsica) in 2014. Here we report on two new sites for this species in the NW Mediterranean Sea and provide a general description of external morphological characters of the colonies and a detailed account of the cnidom to help future identifications. Living specimens may appear virtually identical to small colonies (~5 cm) of the Mediterranean zooxanthellate scleractinian Cladocora caespitosa. While this species shows long, ramified, independent corallites, with cylindrical calices, O. crispata has enlarged, cup-like calices, which can be joined by the coenosteum. It also shows clear differences among several groups of nematocysts, principally the presence in the filaments of large penicilli (p-mastigophore) of one type, which are absent in C. caespitosa. Identifications based on underwater observations or even the analysis of photographs may easily lead to misleading identifications. We hypothesize that O. crispata may have gone unnoticed because of misidentifications as C. caespitosa. More detailed research is needed to get reliable maps of the actual distribution of this apparently non-indigenous species in the Mediterranean Sea.


Author(s):  
Josep Lloret ◽  
Rafael Abós-Herràndiz ◽  
Sílvia Alemany ◽  
Rosario Allué ◽  
Joan Bartra ◽  
...  

Involving and engaging stakeholders is crucial for studying and managing the complex interactions between marine ecosystems and human health and wellbeing. The Oceans and Human Health Chair was founded in the town of Roses (Catalonia, Spain, NW Mediterranean) in 2018, the fruit of a regional partnership between various stakeholders, and for the purpose of leading the way to better health and wellbeing through ocean research and conservation. The Chair is located in an area of the Mediterranean with a notable fishing, tourist, and seafaring tradition and is close to a marine reserve, providing the opportunity to observe diverse environmental conditions and coastal and maritime activities. The Chair is a case study demonstrating that local, collaborative, transdisciplinary, trans-sector, and bottom-up approaches offer tremendous opportunities for engaging coastal communities to help support long-lasting solutions that benefit everyone, and especially those living by the sea or making their living from the goods and services provided by the sea. Furthermore, the Chair has successfully integrated most of its experts in oceans and human health from the most prestigious institutions in Catalonia. The Chair focuses on three main topics identified by local stakeholders: Fish and Health; Leisure, Health, and Wellbeing; and Medicines from the Sea. Led by stakeholder engagement, the Chair can serve as a novel approach within the oceans and human health field of study to tackle a variety of environmental and public health challenges related to both communicable and non-communicable diseases, within the context of sociocultural issues. Drawing on the example provided by the Chair, four principles are established to encourage improved participatory processes in the oceans and human health field: bottom-up, “think local”, transdisciplinary and trans-sectorial, and “balance the many voices”.


2014 ◽  
Vol 16 (7) ◽  
pp. 1963-1973 ◽  
Author(s):  
Carlos Jiménez ◽  
Louis Hadjioannou ◽  
Antonis Petrou ◽  
Andreas Nikolaidis ◽  
Marina Evriviadou ◽  
...  

2017 ◽  
Vol 18 (1) ◽  
pp. 38 ◽  
Author(s):  
D. KERSTING ◽  
E. CEBRIAN ◽  
J. VERDURA ◽  
E. BALLESTEROS

The Mediterranean endemic scleractinian coral Cladocora caespitosa (L., 1767) has been recently included in the IUCN Red List as an endangered species. In this context, information on the species is urgently required to further assess its status and to determine its distribution area. This study reports on the main traits of a recently discovered C. caespitosa population in Formentera (Balearic Islands, W Mediterranean). Here, coral colonies live wrapped in Cystoseira forests thriving on rocky substrata (5 - 13 m depth), thus being a new example of the ability of C. caespitosa to build up extensive populations within algal communities. Even though coral cover reaches ~ 20 % on average, which is a remarkable figure for this species, colonies are generally small (~ 10 cm diameter on average), most probably due to partial exposure to waves and currents. The combination of hydrodynamics and the presence of algal forests in the studied site could be responsible for the high occurrence of a rare type of colony growth: free-living coral nodules or coralliths. This population is highly interesting for future monitoring owing to its unique traits, the absence of necrosis signs related to past mortality events, and its location inside a marine reserve.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Louis Hadjioannou ◽  
Carlos Jimenez ◽  
Cecile Rottier ◽  
Spyros Sfenthourakis ◽  
Christine Ferrier-Pagès

Abstract Anthropogenic nutrient enrichment and increased seawater temperatures are responsible for coral reef decline. In particular, they disrupt the relationship between corals and their dinoflagellate symbionts (bleaching). However, some coral species can afford either high temperatures or nutrient enrichment and their study can bring new insights into how corals acclimate or adapt to stressors. Here, we focused on the role of the nutrient history in influencing the response of the Mediterranean scleractinian coral Cladocora caespitosa to thermal stress. Colonies living naturally in nutrient-poor (<0.5 µM nitrogen, <0.2 µM phosphorus, LN) and nutrient-rich (ca. 10–20 µM nitrogen, 0.4 µM phosphorus, HN) locations were sampled, maintained under the right nutrient conditions, and exposed to a temperature increase from 17 °C to 24 °C and 29 °C. While both HN and LN colonies decreased their concentrations of symbionts and/or photosynthetic pigments, HN colonies were able to maintain significant higher rates of net and gross photosynthesis at 24 °C compared to LN colonies. In addition, while there was no change in protein concentration in HN corals during the experiment, proteins continuously decreased in LN corals with increased temperature. These results are important in that they show that nutrient history can influence the response of scleractinian corals to thermal stress. Further investigations of under-studied coral groups are thus required in the future to understand the processes leading to coral resistance to environmental perturbations.


Sign in / Sign up

Export Citation Format

Share Document