Extreme weather years drive episodic changes in lake chemistry: implications for recovery from sulfate deposition and long-term trends in dissolved organic carbon

2016 ◽  
Vol 127 (2-3) ◽  
pp. 353-365 ◽  
Author(s):  
Kristin E. Strock ◽  
Jasmine E. Saros ◽  
Sarah J. Nelson ◽  
Sean D. Birkel ◽  
Jeffrey S. Kahl ◽  
...  
2016 ◽  
Author(s):  
M. Camino-Serrano ◽  
E. Graf Pannatier ◽  
S. Vicca ◽  
S. Luyssaert ◽  
M. Jonard ◽  
...  

Abstract. Dissolved organic carbon (DOC) in soil solution is connected to DOC in surface waters through hydrological flows. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site-studies has failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result from acidification recovery. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analys is at two levels: 1) to the entire European dataset and 2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC across Europe with temporal slopes of soil solution DOC ranging between −16.8 % yr−1 and +23 % yr−1 (median= +0.4 % yr−1). The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing DOC concentrations with increasing mean nitrate (NO3−) deposition and decreasing DOC concentrations with decreasing me an sulphate (SO42−) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduct ion of SO42− deposition could be confirmed in N-poorer forests, in agreement with observations in surface waters, this was not the case in N-richer forests. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42− and inorganic N) scales.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 545 ◽  
Author(s):  
Ming Chow ◽  
Chao-Chen Lai ◽  
Hsiang-Yi Kuo ◽  
Chih-Hsien Lin ◽  
Tzong-Yueh Chen ◽  
...  

2020 ◽  
Vol 730 ◽  
pp. 139104
Author(s):  
Irena Ciglenečki ◽  
Ivica Vilibić ◽  
Jelena Dautović ◽  
Vjeročka Vojvodić ◽  
Božena Ćosović ◽  
...  

Radiocarbon ◽  
2016 ◽  
Vol 59 (3) ◽  
pp. 843-857 ◽  
Author(s):  
Brett D Walker ◽  
Sheila Griffin ◽  
Ellen R M Druffel

AbstractThe standard procedure for storing/preserving seawater dissolved organic carbon (DOC) samples after field collection is by freezing (–20°C) until future analysis can be made. However, shipping and receiving large numbers of these samples without thawing presents a significant logistical problem and large monetary expense. Access to freezers can also be limited in remote field locations. We therefore test an alternative method of preserving and storing samples for the measurement of DOC concentrations ([DOC]), stable carbon (δ13C), and radiocarbon (as ∆14C) isotopic values via UV photooxidation (UVox). We report a total analytical reproducibility of frozen DOC samples to be [DOC]±1.3 µM, ∆14C±9.4‰, and δ13C±0.1‰, comparable to previously reported results (Druffel et al. 2013). Open Ocean DOC frozen versus acidified duplicates were on average offset by ∆DOC±1.1 µM, ∆∆14C± –1.3‰, and ∆δ13C± –0.1‰. Coastal Ocean frozen vs. acidified sample replicates, collected as part of a long-term (380-day) storage experiment, had larger, albeit consistent offsets of ∆DOC±2.2 µM, ∆∆14C±1.5‰, and ∆δ13C± –0.2‰. A simple isotopic mass balance of changes in [DOC], ∆14C, and δ13C values reveals loss of semi-labile DOC (2.2±0.6 µM, ∆14C=–94±105‰, δ13C=–27±10‰; n=4) and semi-recalcitrant DOC (2.4±0.7 µM, ∆14C=–478±116‰, δ13C=–23.4±3.0‰; n=3) in Coastal and Open Ocean acidified samples, respectively.


2015 ◽  
Vol 21 (8) ◽  
pp. 2963-2979 ◽  
Author(s):  
José L. J. Ledesma ◽  
Thomas Grabs ◽  
Kevin H. Bishop ◽  
Sherry L. Schiff ◽  
Stephan J. Köhler

2011 ◽  
Vol 52 (No. 2) ◽  
pp. 55-63 ◽  
Author(s):  
S.S. Gonet ◽  
B. Debska

The objective of the study was to evaluate the effects of long-term fertilization of a sandy soil with differentiated doses of cattle slurry as well as its after-effect action on the possibilities of migration of dissolved organic carbon (DOC) and dissolved nitrogen (DNt) down to deeper layers of the soil profile. DOC and DNt were extracted with borate buffer and 0.004M CaCl<sub>2</sub> solution. Evaluation of effects of cattle slurry on the content of DOC and DNt was done in comparison with mineral fertilization. It was shown that the use of cattle slurry in the doses of 100 and 200&nbsp;m<sup>3</sup>/ha caused a significant increase of labile organic matter in the 0&ndash;25 and 25&ndash;50 cm layers of soil. As compared with mineral fertilization the application of slurry increased also the amounts of extracted DNt, but only in the surface layer. The DNt content in the deeper soil horizons did not depend on the kind of fertilization. Concentrations of DOC and DNt in the extracts depended not only on their content in soil but it was also modified substantially by the extractant used.


Sign in / Sign up

Export Citation Format

Share Document