Special Issue of the 15th International Symposium for the Advancement of Boundary-Layer Remote Sensing (ISARS), 28–30 June 2010, Paris, France

2012 ◽  
Vol 143 (1) ◽  
pp. 1-2
Author(s):  
Thomas Dubos ◽  
Marie Lothon
2019 ◽  
Vol 11 (12) ◽  
pp. 1439 ◽  
Author(s):  
Hyung-Sup Jung ◽  
Joo-Hyung Ryu ◽  
Sang-Eun Park ◽  
Hoonyol Lee ◽  
No-Wook Park

The international symposium on remote sensing 2018 (ISRS 2018) was held in Pyeongchang, Korea, 9–11 May 2018 [...]


2021 ◽  
Author(s):  
Mariel Friberg ◽  
Dong Wu ◽  
James Carr ◽  
James Limbacher ◽  
Yufei Zou ◽  
...  

<p>Wildfires have posed increasing risks to human health and loss of life and property. Observations of wildfire remain limited, particularly the plume variables such as injection height and wind velocity critical to assessing wildfire impacts. Lack of adequate spatiotemporal coverage and measurement accuracy hinder predictability and initialization needed by weather and chemical transport models. The new observations from the emerging stereo wind and aerosol imaging techniques with LEO-GEO and GEO-GEO satellites offer an unprecedented opportunity to study wildfire dynamics and evolution processes in great detail. The diurnal coverage of the GEO-GEO winds stereo products (Carr et al., 2020, 2019, 2018) and the daytime coverage (and detail) of GEO multi-angle aerosol products (Limbacher et al., 2021; In Prep) can capture and further our understanding of intense wildfire dynamics (e.g., pyroCb), planetary boundary layer (PBL) variations, and direction of aerosol loadings. Using two new satellite-based stereoscopic tracking algorithms, we compare stereo observations directly with the Coupled WRF-CMAQ simulations (Zou et al., 2019) to diagnose the modeled plume injection height and wind velocity, and aerosol properties (Friberg et al., 2021; In Prep). The validated LEO-GEO winds and height algorithm provides plume dynamics data with an accuracy of 200 m vertical resolution for plume height and 0.5 m/s for plume speed. Using these stereo algorithms, we can determine if fire plumes stay within or shoot above PBL, which plays a critical role in plume transport and air quality. From the GEO-based observations of dynamic wildfire aerosol loading dispersion, height, and winds, we can track wildfire development at a sub-hourly frequency and capture extreme and/or rare events such as pyroCb that often occur in a short period of time and are largely missed by LEO satellites.</p><p> </p><p><strong>References:</strong></p><p>Carr, J.L., Wu, D.L., Daniels, J., Friberg, M.D., Bresky, W., Madani, H. “GEO-GEO Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring,” Remote Sensing, 2020 https://doi.org/10.3390/rs12223779</p><p>Carr, J.L., D.L. Wu, R.E. Wolfe, H. Madani, G. Lin, B. Tan, “Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES,” Remote Sensing, 2019, Satellite Winds Special Issue https://doi.org/10.3390/rs11182100</p><p>Carr, J.L., D.L. Wu, M.A. Kelly, and J. Gong, “MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds,” Remote Sensing, 2018, MISR Special Issue. https://www.mdpi.com/2072-4292/10/12/1885</p><p>Limbacher, J. A., R. A. Kahn, and M. D. Friberg “A Multi-Angle Geostationary Aerosol Retrieval Algorithm,” 2021 [<strong>In Prep</strong>].</p><p>Zou, Y., O’Neill, S.M., Larkin, N.K., Alvarado, E.C., Solomon, R., Mass, C., Liu, Y., Odman, M.T., Shen, H. “Machine learning based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment. International Journal of Environmental Research and Public Health, 2019. https://doi.org/10.3390/ijerph16122137</p><p>Friberg, M.D., Wu, D.L., Carr, J.L., Limbacher, J. A., Zou<sup>, </sup>Y., O’Neill, S. “Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques,” 2021 [<strong>In Prep</strong>].</p>


2020 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Fuan Tsai ◽  
Chao-Hung Lin ◽  
Walter W. Chen ◽  
Jen-Jer Jaw ◽  
Kuo-Hsin Tseng

The 2019 International Symposium on Remote Sensing (ISRS-2019) took place in Taipei, Taiwan from 17 to 19 April 2019. ISRS is one of the distinguished conferences on the photogrammetry, remote sensing and spatial information sciences, especially in East Asia. More than 220 papers were presented in 37 technical sessions organized at the conference. This Special Issue publishes a limited number of featured peer-reviewed papers extended from their original contributions at ISRS-2019. The selected papers highlight a variety of topics pertaining to innovative concepts, algorithms and applications with geospatial sensors, systems, and data, in conjunction with emerging technologies such as artificial intelligence, machine leaning and advanced spatial analysis algorithms. The topics of the selected papers include the following: the on-orbit radiometric calibration of satellite optical sensors, environmental characteristics assessment with remote sensing, machine learning-based photogrammetry and image analysis, and the integration of remote sensing and spatial analysis. The selected contributions also demonstrate and discuss various sophisticated applications in utilizing remote sensing, geospatial data, and technologies to address different environmental and societal issues. Readers should find the Special Issue enlightening and insightful for understanding state-of-the-art remote sensing and spatial information science research, development and applications.


The concept of exposome has received increasing discussion, including the recent Special Issue of Science –"Chemistry for Tomorrow's Earth,” about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.


Sign in / Sign up

Export Citation Format

Share Document