Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques

Author(s):  
Mariel Friberg ◽  
Dong Wu ◽  
James Carr ◽  
James Limbacher ◽  
Yufei Zou ◽  
...  

<p>Wildfires have posed increasing risks to human health and loss of life and property. Observations of wildfire remain limited, particularly the plume variables such as injection height and wind velocity critical to assessing wildfire impacts. Lack of adequate spatiotemporal coverage and measurement accuracy hinder predictability and initialization needed by weather and chemical transport models. The new observations from the emerging stereo wind and aerosol imaging techniques with LEO-GEO and GEO-GEO satellites offer an unprecedented opportunity to study wildfire dynamics and evolution processes in great detail. The diurnal coverage of the GEO-GEO winds stereo products (Carr et al., 2020, 2019, 2018) and the daytime coverage (and detail) of GEO multi-angle aerosol products (Limbacher et al., 2021; In Prep) can capture and further our understanding of intense wildfire dynamics (e.g., pyroCb), planetary boundary layer (PBL) variations, and direction of aerosol loadings. Using two new satellite-based stereoscopic tracking algorithms, we compare stereo observations directly with the Coupled WRF-CMAQ simulations (Zou et al., 2019) to diagnose the modeled plume injection height and wind velocity, and aerosol properties (Friberg et al., 2021; In Prep). The validated LEO-GEO winds and height algorithm provides plume dynamics data with an accuracy of 200 m vertical resolution for plume height and 0.5 m/s for plume speed. Using these stereo algorithms, we can determine if fire plumes stay within or shoot above PBL, which plays a critical role in plume transport and air quality. From the GEO-based observations of dynamic wildfire aerosol loading dispersion, height, and winds, we can track wildfire development at a sub-hourly frequency and capture extreme and/or rare events such as pyroCb that often occur in a short period of time and are largely missed by LEO satellites.</p><p> </p><p><strong>References:</strong></p><p>Carr, J.L., Wu, D.L., Daniels, J., Friberg, M.D., Bresky, W., Madani, H. “GEO-GEO Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring,” Remote Sensing, 2020 https://doi.org/10.3390/rs12223779</p><p>Carr, J.L., D.L. Wu, R.E. Wolfe, H. Madani, G. Lin, B. Tan, “Joint 3D-Wind Retrievals with Stereoscopic Views from MODIS and GOES,” Remote Sensing, 2019, Satellite Winds Special Issue https://doi.org/10.3390/rs11182100</p><p>Carr, J.L., D.L. Wu, M.A. Kelly, and J. Gong, “MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds,” Remote Sensing, 2018, MISR Special Issue. https://www.mdpi.com/2072-4292/10/12/1885</p><p>Limbacher, J. A., R. A. Kahn, and M. D. Friberg “A Multi-Angle Geostationary Aerosol Retrieval Algorithm,” 2021 [<strong>In Prep</strong>].</p><p>Zou, Y., O’Neill, S.M., Larkin, N.K., Alvarado, E.C., Solomon, R., Mass, C., Liu, Y., Odman, M.T., Shen, H. “Machine learning based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment. International Journal of Environmental Research and Public Health, 2019. https://doi.org/10.3390/ijerph16122137</p><p>Friberg, M.D., Wu, D.L., Carr, J.L., Limbacher, J. A., Zou<sup>, </sup>Y., O’Neill, S. “Diurnal Observations of Wildfires Boundary Layer Dynamics and Aerosol Plume Convection using Stereo-Imaging Techniques,” 2021 [<strong>In Prep</strong>].</p>

1996 ◽  
Vol 1996 (67) ◽  
pp. 39-42 ◽  
Author(s):  
Hidetoshi HAYASHIDA ◽  
Syoichiro FUKAO ◽  
Takahisa KOBAYASHI ◽  
Hiroshi NIRASAWA ◽  
Yoshihiro MATAKI ◽  
...  

2016 ◽  
Author(s):  
Grigorii P. Kokhanenko ◽  
Yurii S. Balin ◽  
Sergei V. Nasonov ◽  
Ioganes E. Penner ◽  
Svetlana V. Samoilova ◽  
...  

2008 ◽  
Vol 47 (5) ◽  
pp. 1467-1475 ◽  
Author(s):  
U. C. Dumka ◽  
K. Krishna Moorthy ◽  
S. K. Satheesh ◽  
Ram Sagar ◽  
P. Pant

Abstract Multiyear measurements of spectral aerosol optical depths (AODs) were made at Manora Peak in the central Himalaya Range (29°22′N, 79°27′E, ∼1950 m above mean sea level), using a 10-channel multiwavelength solar radiometer for 605 days during January 2002–December 2004. The AODs at 0.5 μm were very low (≤0.1) in winter and increased steeply to reach high values (∼0.5) in summer. It was observed that monthly mean AODs vary significantly (by more than a factor of 6) from January to June. Strong short-period fluctuations (within a daytime) were observed in the AODs. Further investigations of this aspect have revealed that boundary layer dynamics plays a key role in transporting aerosols from the polluted valley region to higher altitudes, causing large contrast in AODs between forenoon and afternoon. The seasonal variations in AODs, while examined in conjunction with synoptic-scale wind fields, have revealed that the transport of dust aerosols from arid regions to the valley regions adjacent to the observational site and their subsequent transport upward by boundary layer dynamics are responsible for the summer increases.


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


The concept of exposome has received increasing discussion, including the recent Special Issue of Science –"Chemistry for Tomorrow's Earth,” about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.


2001 ◽  
Author(s):  
Brian H. Fiedler ◽  
Yefim Kogan ◽  
Alan Shapiro ◽  
Vince Wong ◽  
Joshua Wurman

Sign in / Sign up

Export Citation Format

Share Document