Numerical Simulation for Optimizing Injection – Production Parameters When Using Cyclic Steam Injection Plus Polymer Gel Flooding in An Offshore Heavy-Oil Field

2017 ◽  
Vol 53 (4) ◽  
pp. 621-631 ◽  
Author(s):  
Yanxia Zhou ◽  
Xiangguo Lu ◽  
Rongjian Wang ◽  
Yigang Liu
2009 ◽  
Author(s):  
Sung Yuh ◽  
Mickaele Le Ravalec-Dupin ◽  
Christian Hubans ◽  
Pierre-Olivier Lys ◽  
David Jean Foulon

Author(s):  
Gilberto Peña Villegas ◽  
María del Carmen Echeverrías

A Giant Heavy Oil Field requires extending and maintaining the production plateau during a continuous period of more than 30 years. In order to increase the revenues of the global project, the construction of Upgrader plant is always considered. Cold production conditions are first, the project has estimated between 10-8% of the STOIIP obtained through cold production but it would not be enough to extend the production plateau. Therefore, later on it will be necessary to apply thermal EOR techniques, as: • Steam Injection: 1-CSS + Steam Flooding, 2-SAGD or HASD • In-situ combustion Aim for this integrated study was to visualize the new facilities design and modification on the exiting cold production facilities to manage the hot production (investments) in function of reservoir/production requirements. The benefit of this integrated study is to value the additional investments in surface facilities required under thermal EOR production to get the global integrated project evaluation.


2019 ◽  
Vol 7 (6) ◽  
pp. 2437-2455 ◽  
Author(s):  
German A. Abzaletdinov ◽  
Temitope Ajayi ◽  
Youssuf A. Elnoamany ◽  
Sergey Durkin ◽  
Ipsita Gupta

2021 ◽  
Author(s):  
Mohammed Al Asimi ◽  
Nasar Al Qasabi ◽  
Duc Le ◽  
Yuchen Zhang ◽  
Di Zhu ◽  
...  

Abstract After successful implementation of data analytics for steamflood optimization at the Mukhaizna heavy oil field in Oman late 2018, Occidental expanded the project to two additional areas with a total of 626 wells in 2019, followed by full field coverage of more than 3,200 wells in 2020. In 2019, two separate low-fidelity proxy models were built to model the two pilot areas. The models were updated with more features to account for additional reservoir phenomena and a larger scope. On the proxy engine side, speed and robustness were improved, resulting in reduced CPU processing time and lower cost. Because of advancements in software programing and the pilots’ encouraging production performance, full-field coverage was accelerated so the model could support the efforts in optimizing steam injection during the 2020 OPEC+ production cut, not only to comply with allotted quotas, but also to allocate the resources optimally, especially the costly steam. Good improvements have been observed in overall steamflood performance, the models’ capabilities, and the optimization workflow. The steam/oil ratio has been reduced through the increase in oil production in both expanded study areas while keeping the total steam injection volume constant. Overall field steam utilization was improved both during the 2020 OPEC+ production cuts and during the production ramp-up stage afterward. With the continuous improvement in supporting tools and scripts, most of the steam optimization process steps were automated, from preparing, checking, and formatting input data to analyzing, validating, and visualizing the model outputs. Another result of these improvements was the development of a user-friendly web application to manage the model workflow efficiently. This web app greatly improved the process of case submittals, including data preparation and QC, running models (history matching and forecasting), as well as visualization of the entire workflow. In terms of optimization workflow, these improvements resulted in less time spent by the field optimization engineer in updating, refreshing, and generating new model recommendations. It also helped reduce the time spent by the reservoir management team (RMT) to test and validate the new ideas before field implementation. This paper will describe the improvements in the proxy model and the overall optimization process, show the observed oil production increases, and discuss the challenges faced and the lessons learned.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 494-502 ◽  
Author(s):  
Z.. Wu ◽  
S.. Vasantharajan ◽  
M.. El-Mandouh ◽  
P.V.. V. Suryanarayana

Summary In this paper, we present a new, semianalytical gravity-drainage model to predict the oil production of a cyclic-steam-stimulated horizontal well. The underlying assumption is that the cyclic steam injection creates a cylindrical steam chamber in the upper area of the well. Condensed water and heated oil in the chamber are driven by gravity and pressure drawdown toward the well. The heat loss during the soak period and during oil production is estimated under the assumption of vertical and radial conduction. The average temperature change in the chamber during the cycle is calculated using a semianalytical expression. Nonlinear, second-order ordinary differential equations are derived to describe the pressure distribution caused by the two-phase flow in the wellbore. A simple iteration scheme is proposed to solve these equations. The influx of heated oil and condensed water into the horizontal wellbore is calculated under the assumption of steady-state radial flow. The solution from the semianalytical formulation is compared against the results from a commercial thermal simulator for an example problem. It is shown that the model results are in good agreement with those obtained from reservoir simulation. Sensitivity studies for optimization of wellbore length, gravity drainage, bottomhole pressure, and steam-injection rate are conducted with the model. Results indicate that the proposed model can be used in the optimization of individual-well performance in cyclic-steam-injection heavy-oil development. The semianalytical thermal model presented in this work can offer an attractive alternative to numerical simulation for planning heavy-oil field development.


Sign in / Sign up

Export Citation Format

Share Document