scholarly journals Feasibility of steam injection process in a thin, low-permeability heavy oil reservoir of Arkansas -- a numerical simulation study

1993 ◽  
Author(s):  
A.K. Sarkar ◽  
P.S. Sarathi
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaopeng Cao ◽  
Zupeng Liu ◽  
Yong Yang ◽  
Shiming Zhang ◽  
Yahui Bu ◽  
...  

Deep low permeability extra heavy oil reservoir has the characteristics of high formation pressure, high crude oil viscosity, and low permeability. Conventional steam injection thermal recovery has poor viscosity reduction performance and low productivity of a single well, which makes it difficult to develop this type of heavy oil reservoir. In this paper, core flooding experiment and microvisualization equipment were used to study the mechanism of improving the recovery of deep extra heavy oil by using water-soluble viscosity reducer; the realization of water-soluble viscosity reducer in numerical simulation was achieved by using nonlinear mixing rule; the reservoir numerical simulation model of water-soluble viscosity reducer displacement in test well group was established to optimize the development technical parameter of water-soluble viscosity reducer. The results show that compared with waterflooding, the oil displacement efficiency of water-soluble viscosity reducer is increased by 12.7%; water-soluble viscosity reducer can effectively reduce the viscosity of extra heavy oil, under the same temperature and permeability, the higher the concentration of viscosity reducer, the better the viscosity reduction effect, and the smaller the pressure gradient required at the same injection rate; the main mechanism of water-soluble viscosity reducer for enhancing oil recovery is to form oil in water emulsion, which can reduce the viscosity and interfacial tension of crude oil and reduce the residual oil saturation; in the pilot well group, the optimized injection concentration of water-soluble viscosity reducer is 3%, and the optimal injection amount of water-soluble viscosity reducer solution is 50 t/d; water-soluble viscosity reducer displacement was implemented in the pilot well group, the average daily oil of well group was increased from 1.8 t/d to 7.34 t/d, and the pilot well group has achieved good development performance.


2016 ◽  
Vol 9 (4) ◽  
pp. 125-136
Author(s):  
A. R. Gurgel ◽  
A. A. R. Diniz ◽  
A. D. A. Araújo Jr ◽  
M. A. F. Rodrigues ◽  
W. da Mata ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1999 ◽  
Author(s):  
Jun Ni ◽  
Xiang Zhou ◽  
Qingwang Yuan ◽  
Xinqian Lu ◽  
Fanhua Zeng ◽  
...  

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Tamer Moussa ◽  
Mohamed Mahmoud ◽  
Esmail M. A. Mokheimer ◽  
Dhafer Al-Shehri ◽  
Shirish Patil

This paper introduces a novel approach to generate downhole steam using thermochemical reactions to overcome the challenges associated with heavy oil resources. The procedure developed in this paper is applied to a heavy oil reservoir, which contains heavy oil (12–23 API) with an estimated range of original oil in place (OOIP) of 13–25 billion barrels while its several technical challenges are limiting its commercial development. One of these challenges is the overlying 1800–2000-ft thick permafrost layer, which causes significant heat losses when steam is injected from the surface facilities. The objective of this research is to conduct a feasibility study on the application of the new approach in which the steam is generated downhole using the thermochemical reaction (SGT) combined with steam-assisted gravity drainage (SAGD) to recover heavy oil from the reservoir. A numerical simulation model for a heavy oil reservoir is built using a CMG-STARS simulator, which is then integrated with a matlab framework to study different recovery strategies on the project profitability. The design and operational parameters studied and optimized in this paper involve (1) well configurations and locations and (2) steam injection rate and quality as well as a steam trap in SAGD wells. The results show that the in situ SGT is a successful approach to recover heavy oil from the reservoir, and it yields high-project profitability. The main reason for this outperformance is the ability of SGT to avoid the significant heat losses and associated costs associated with the surface steam injection.


Sign in / Sign up

Export Citation Format

Share Document