Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment

2018 ◽  
Vol 37 (4) ◽  
pp. 577-597 ◽  
Author(s):  
J. M. Houthuijzen ◽  
J. Jonkers
2019 ◽  
Vol 20 (6) ◽  
pp. 1263 ◽  
Author(s):  
Marta Truffi ◽  
Serena Mazzucchelli ◽  
Arianna Bonizzi ◽  
Luca Sorrentino ◽  
Raffaele Allevi ◽  
...  

Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.


2020 ◽  
Author(s):  
Dongwei Dou ◽  
Xiaoyang Ren ◽  
Mingli Han ◽  
Xiaodong Xu ◽  
Xin Ge ◽  
...  

Abstract Background Cancer associated fibroblasts (CAF) are important component in tumor microenvironment and has been reported contributes to tumor progression through many mechanisms, however, the detailed mechanism underling immune-suppression effect are not clearly defined. Methods In this study, human breast cancer-derived cancer associated fibroblasts was cultured, and CAF-derived exosomes in culture medium was isolated. Cancer cell migration was evaluated by transwell and wound healing assay, miR-92 binding to the LATS2 3’ untranslated region was validated by luciferase report assay, and underlying mechanism was investigated by chromatin immunoprecipitation and Immunoprecipitation. Results After treatment by CAF-derived exosomes, breast cancer cells express higher PD-L1, accompanied with increased miR-92 expression. Increased PD-L1 expression which induced by CAF- derived exosomes significantly promotes apoptosis and impaired proliferation of T cell. proliferation and migration of breast cancer cells was increased after transfection of miR-92, LATS2 was recognized as target gene of miR-92, which was proved by luciferase assay. Immunoprecipitation (IP) shown that LATS2 can interact with YAP1, after nuclear translocation, YAP1 could binds to enhancer region of PD-L1 to promotes transcription activity, which was confirmed by chromatin immunoprecipitation (ChIP). Furthermore, animal study confirmed that cancer associated fibroblasts significantly promotes tumor progression and impaired function of tumor infiltrated immune cells in vivo. Conclusion Our data revealed a novel mechanism which can induce immune suppression in tumor microenvironment.


2011 ◽  
Author(s):  
Agnieszka K. Witkiewicz ◽  
Jessica Kline ◽  
Maria Queenan ◽  
Jonathan Brody ◽  
Federica Sotgia ◽  
...  

2014 ◽  
Vol 20 (23) ◽  
pp. 6083-6095 ◽  
Author(s):  
Gina Song ◽  
David B. Darr ◽  
Charlene M. Santos ◽  
Mark Ross ◽  
Alain Valdivia ◽  
...  

2015 ◽  
Author(s):  
Nicole Lavender ◽  
Jiqing Sai ◽  
Jinming Yang ◽  
Sergey V. Novitskiy ◽  
Ann Richmond

Sign in / Sign up

Export Citation Format

Share Document