Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells

2009 ◽  
Vol 12 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Sik-Loo Tan ◽  
Sofiah Sulaiman ◽  
Belinda Pingguan-Murphy ◽  
L. Selvaratnam ◽  
Cheh-Chin Tai ◽  
...  
2021 ◽  
Vol 54 (2) ◽  
pp. 68
Author(s):  
Michael Josef Kridanto Kamadjaja

Background: Bone regeneration studies involving the use of chitosan–hydroxyapatite (Ch-HA) scaffold seeded with human amnion mesenchymal stem cells (hAMSCs) have largely incorporated tissue engineering experiments. However, at the time of writing, the results of such investigations remain unclear. Purpose: The aim of this study was to determine the osteogenic differentiation of the scaffold Ch-HA that is seeded with hAMSCs in the regeneration of calvaria bone defect. Methods: Ch-HA scaffold of 5 mm diameter and 2 mm height was created by lyophilisation and desalination method. hAMSCs were cultured in hypoxia environment (5% oxygen, 10% carbon dioxide, 15% nitrogen) and seeded on the scaffold. Twenty male Wistar rat subjects (8 – 10 weeks, 200 - 250 grams) were randomly divided into two groups: control and hydroxyapatite scaffold (HAS). Defects (similar size to scaffold size) were created in the calvaria bone of the all-group subjects, but a scaffold was subsequently implanted only in the treatment group members. Control group left without treatment. After observation lasting 1 and 8 weeks, the subjects were examined histologically and immunohistochemically. Statistical analysis was done using ANOVA test. Results: Angiogenesis; expression of vascular endothelial growth factor; bone morphogenetic protein; RunX-2; alkaline phosphatase; type-1 collagen; osteocalcin and the area of new trabecular bone were all significantly greater in the HAS group compared to the control group. Conclusion: The three-dimensional Ch-HA scaffold seeded with hypoxic hAMSCs induced bone remodeling in calvaria defect according to the expression of the osteogenic and angiogenic marker.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Andrea Sofia Flores ◽  
Keishla Gonzalez ◽  
Maribella Domenech

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Vitale Miceli ◽  
Mariangela Pampalone ◽  
Serena Vella ◽  
Anna Paola Carreca ◽  
Giandomenico Amico ◽  
...  

The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.


2008 ◽  
Vol 41 (5) ◽  
pp. 709-725 ◽  
Author(s):  
K. Han ◽  
J. E. Lee ◽  
S. J. Kwon ◽  
S. Y. Park ◽  
S. H. Shim ◽  
...  

Placenta ◽  
2014 ◽  
Vol 35 (10) ◽  
pp. A6 ◽  
Author(s):  
Kenichi Yamahara ◽  
Akihiko Taguchi ◽  
Toshihiro Soma ◽  
Hiroyasu Ogawa ◽  
Tomoaki Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document