Non-oxidative Decomposition of CH4 Over CeO2 and CeO2–SiO2 Supported Bimetallic Ni–Mo Catalysts

2021 ◽  
Author(s):  
Hanan A. Ahmed ◽  
Ahmed E. Awadallah ◽  
Ateyya A. Aboul-Enein ◽  
Sanaa M. Solyman ◽  
Noha A. K. Aboul-Gheit
Author(s):  
Emma Jakab ◽  
Zoltán Sebestyén ◽  
Bence Babinszki ◽  
Eszter Barta-Rajnai ◽  
Zsuzsanna Czégény ◽  
...  

SummaryThe thermo-oxidative decomposition of lovage (Levisticum officinale) and davana (Artemisia pallens) essential oils has been studied by pyrolysis-gas chromatography/mass spectrometry in 9% oxygen and 91% nitrogen atmosphere at 300 °C to simulate low-temperature tobacco heating conditions. Both lovage and davana oils contain numerous chemical substances; the main components of both oils are various oxygen-containing compounds. Isobenzofuranones are the most important constituents of lovage oil, and their relative intensity changed significantly during oxidative pyrolysis. (Z)-ligustilide underwent two kinds of decomposition reactions: an aromatization reaction resulting in the formation of butylidenephthalide and the scission of the lactone ring with the elimination of carbon dioxide or carbon monoxide. Davanone is the main component of davana oil, which did not decompose considerably during low-temperature oxidative pyrolysis. However, the relative yield of the second most intensive component, bicyclogermacrene, reduced markedly due to bond rearrangement reactions. Davana ether underwent oxidation reactions leading to the formation of various furanic compounds. The changes in the composition of both essential oils could be interpreted in terms of bond splitting, intramolecular rearrangement mechanisms and oxidation reactions of several constituents during low-temperature oxidative pyrolysis. The applied thermo-oxidative method was found to be suitable to study the stability of the essential oils and monitor the decomposition products under simulated tobacco heating conditions. In spite of the complicated composition of the essential oils, no evidence for interaction between the oil components was found. [Beitr. Tabakforsch. Int. 29 (2020) 27–43]


2019 ◽  
Author(s):  
Sayad Doobary ◽  
Alexi Sedikides ◽  
Henry caldora ◽  
Darren poole ◽  
Alastair Lennox

Fluorinated alkyl groups are important motifs in bioactive compounds, positively influencing pharmacokinetics, potency and F conformation. The oxidative difluorination of alkenes represents an H important strategy for their preparation, yet current methods are limited in their alkene-types and tolerance of electron-rich, readily oxidized functionalities, as well as in their scalability. Herein, we report a method for the difluorination of a number of unactivated alkene-types that is tolerant of electron-rich functionality, giving products that are otherwise unattainable. Key to success is the electrochemical generation of a hypervalent iodine mediator (in the presence of nucleophilic fluoride and HFIP) using an ‘ex-cell’ approach, which avoids the oxidative decomposition of the substrate. The more sustainable conditions give good to excellent yields of product in up to decagram scales<br>


2000 ◽  
Vol 18 (4) ◽  
pp. 245-264 ◽  
Author(s):  
HYUN CHUL JUN ◽  
HAE PYEONG LEE ◽  
SUNG-CHUL YI ◽  
KYONG OK YOO ◽  
SEA CHEON OH

Sign in / Sign up

Export Citation Format

Share Document