Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G

2009 ◽  
Vol 103 (4) ◽  
pp. 281-299 ◽  
Author(s):  
C. F. de Melo ◽  
E. E. N. Macau ◽  
O. C. Winter
Author(s):  
Su-Jin Choi ◽  
John Carrico ◽  
Mike Loucks ◽  
Hoonhee Lee ◽  
Sejin Kwon

AbstractWe show that it is possible to launch a satellite to Geostationary Equatorial orbit (GEO) from the non-equatorial launch site (Naro Space Center in South Korea) even though that is located in the mid-latitudes of the northern hemisphere. When launched from this site, the equatorial inclination after separation will be 80°. We use a lunar gravity assist (LGA) transfer to avoid the excessive ∆V costs of plane change maneuvers. There are eight possible paths for the LGA; there are four paths consisting of Earth departures and free-return types, and there are two nodes of the Moon’s orbit (ascending and descending). We analyze trajectories over five launch periods for each path using a high-fidelity orbit propagation model. We show that the LGA changes the orbital energy of the “cislunar” free-returns more than for the “circumlunar” free-returns, resulting in less geostationary insertion ∆V for the cislunar free-returns. We also show that the geometrical ∆V variation over the different paths is greater than the seasonal ∆V variation. Our results indicate that an ascending departure and cislunar free-return at the descending node have lower ∆V requirements than the other paths, and lower than described in several previous studies.


2009 ◽  
Vol 15 (1) ◽  
pp. 13-18 ◽  
Author(s):  
A.I. Maslova ◽  
◽  
A.V. Pirozhenko ◽  

1997 ◽  
Author(s):  
Sang-Young Park ◽  
I. Ross ◽  
I. Ross ◽  
Sang-Young Park

2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


1997 ◽  
Vol 45 (3) ◽  
pp. 329-347 ◽  
Author(s):  
Der-Ming Ma ◽  
Chi-Hang Wu ◽  
Nguyen X. Vinh

1998 ◽  
Vol 35 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Roby S. Wilson ◽  
Kathleen C. Howell

Sign in / Sign up

Export Citation Format

Share Document