low earth orbits
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 51)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
Peter Simon Sapaty

Many governmental agencies and private companies of different countries are now rushing into space around Earth in hope to provide smart communication, industrial, security, and defense solutions. This often involves massive launches of cheap small satellites which are also contributing to the growth of space debris. The current paper discusses how the developed high-level system philosophy and model can effectively organize distributed space-based systems on different stages of their development and growth. The briefed Spatial Grasp Technology, based on parallel pattern-matching of distributed environments with high-level recursive mobile code, can effectively provide any networking protocols and important applications of large satellite constellations, especially those on Low Earth Orbits. The paper contains examples of technology-based solutions for establishing basic communications between satellites, starting from their initial, often chaotic, launches and distributing and collecting data in the growing constellations with even unstable and rapidly changing connections between satellites. It describes how to organize and register networking topologies in case of predictable distances between satellites, and how the fixed networking structures can help in solving complex problems. The latter including those related to the new Space Development Agency multiple-satellite defense-oriented architecture and allowing for effective integration of its continuous earth custody observation and cooperative missile tracking and elimination layers, based on self-spreading mobile intelligence. Earlier versions of the technology, described in many papers, six books including, were prototyped and used in different countries, with the current one quickly implementable too, even in university-based environments.


2021 ◽  
Vol 14 (12) ◽  
pp. 7405-7433
Author(s):  
Daan Hubert ◽  
Klaus-Peter Heue ◽  
Jean-Christopher Lambert ◽  
Tijl Verhoelst ◽  
Marc Allaart ◽  
...  

Abstract. Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however, challenge measurement systems to operate at opposite ends of the spatio-temporal scale ladder. Aboard the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aspires to take the next leap forward by measuring ozone and its precursors at unprecedented horizontal resolution until at least the mid-2020s. In this work, we assess the quality of TROPOMI's first release (V01.01.05–08) of tropical tropospheric ozone column (TrOC) data. Derived with the convective cloud differential (CCD) method, TROPOMI daily TrOC data represent the 3 d moving mean ozone column between the surface and 270 hPa under clear-sky conditions gridded at 0.5∘ latitude by 1∘ longitude resolution. Comparisons to almost 2 years of co-located SHADOZ ozonesonde and satellite data (Aura OMI and MetOp-B GOME-2) conclude to TROPOMI biases between −0.1 and +2.3 DU (<+13 %) when averaged over the tropical belt. The field of the bias is essentially uniform in space (deviations <1 DU) and stable in time at the 1.5–2.5 DU level. However, the record is still fairly short, and continued monitoring will be key to clarify whether observed patterns and stability persist, alter behaviour or disappear. Biases are partially due to TROPOMI and the reference data records themselves, but they can also be linked to systematic effects of the non-perfect co-locations. Random uncertainty due to co-location mismatch contributes considerably to the 2.6–4.6 DU (∼14 %–23 %) statistical dispersion observed in the difference time series. We circumvent part of this problem by employing the triple co-location analysis technique and infer that TROPOMI single-measurement precision is better than 1.5–2.5 DU (∼8 %–13 %), in line with uncertainty estimates reported in the data files. Hence, the TROPOMI precision is judged to be 20 %–25 % better than for its predecessors OMI and GOME-2B, while sampling at 4 times better spatial resolution and almost 2 times better temporal resolution. Using TROPOMI tropospheric ozone columns at maximal resolution nevertheless requires consideration of correlated errors at small scales of up to 5 DU due to the inevitable interplay of satellite orbit and cloud coverage. Two particular types of sampling error are investigated, and we suggest how these can be identified or remedied. Our study confirms that major known geophysical patterns and signals of the tropical tropospheric ozone field are imprinted in TROPOMI's 2-year data record. These include the permanent zonal wave-one pattern, the pervasive annual and semiannual cycles, the high levels of ozone due to biomass burning around the Atlantic basin, and enhanced convective activity cycles associated with the Madden–Julian Oscillation over the Indo-Pacific warm pool. TROPOMI's combination of higher precision and higher resolution reveals details of these patterns and the processes involved, at considerably smaller spatial and temporal scales and with more complete coverage than contemporary satellite sounders. If the accuracy of future TROPOMI data proves to remain stable with time, these hold great potential to be included in Climate Data Records, as well as serve as a travelling standard to interconnect the upcoming constellation of air quality satellites in geostationary and low Earth orbits.


2021 ◽  
Author(s):  
Giulia Sarego ◽  
Lorenzo Olivieri ◽  
Andrea Valmorbida ◽  
Alice Brunello ◽  
Giacomo Colombatti ◽  
...  

2021 ◽  
pp. 60-68
Author(s):  
Артём Сергеевич Смирнов ◽  
Александр Вячеславович Голубек

The object of the article is the movement of an ultra-light class liquid-propellant launch vehicle in near-earth space. The subject of the research is the accuracy of launching a spacecraft by a launch vehicle. The article studies the effect of errors in the instruments of a strap-down inertial navigation system built with the use of MEMS sensors on the accuracy of launching a spacecraft into low-earth orbits with an altitude of up to 450 km for two modes of operation: with and without a satellite navigation system. Tasks: to identify the determining disturbing factors, to determine the influence of instrument errors on the trajectory tube, to determine the influence of instrument errors on the insertion accuracy, to perform a comparative analysis of the accuracy characteristics obtained for two modes of operation of the navigation system. Methods used analysis, synthesis, analogy, comparison, factor analysis, statistical modeling, statistical processing of modeling results. Results: a set of defining disturbing factors was revealed, the dependencies of the trajectory tubes on the altitude of the target orbit and flight time were obtained, the dependencies of the limiting deviations of the parameters of the spacecraft's orbit at the time of separation from the launch vehicle on the altitude of the target orbit were obtained. Conclusions. 1. It is shown that the determining perturbing factors are the zero drift of the gyroscope from launch to launch and the zero random drift of the gyroscope. 2. It was determined that the value of the trajectory tube monotonically expands on time and the height of the target orbit. Maximum deviations of the current position and absolute speed in the mode without using a satellite navigation system do not exceed 115 km and 140 m/s. For the mode using a satellite navigation system, these values do not exceed 140 m and 1.5 m/s. 3. It was revealed that the maximum deviations of the parameters of the spacecraft's orbit in the mode with the use of a satellite navigation system do not exceed 27 km in height, 1.8o in inclination, 4.5x10-4 in eccentricity, and 2.7o for the longitude of the ascending node. For the mode with a satellite navigation system - in height - 2.6 km, in inclination and longitude of the ascending node - 0.0003о, in eccentricity - 3.5x10-4. 4. Generally, the use of a satellite navigation system narrows the trajectory tube by twice, and the accuracy increases to four times, depending on the orbital parameters.


2021 ◽  
Author(s):  
Marwa Qaraqe ◽  
Muhammad Usman ◽  
Ahmet Serbes ◽  
Imran Shafique Ansari ◽  
Mohamed-Slim Alouini

We present the concept of power HotSpots wherein the bigger satellites in low earth orbits (LEO), having power generation capacity much larger than CubeSats, can transfer their excess energy to CubeSats in need, using optical wireless technology. This provides a business opportunity for larger enterprises having the capability of launching bigger satellites to sell their power to CubeSats. As a proof of concept, this article presents a basic simulation regarding optical wireless power transfer (OWPT) to CubeSats. In addition, we highlight future research challenges in this area to maximize OWPT.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 916
Author(s):  
Peter Yao ◽  
Timothy Sands

In this manuscript, a method for maneuvering a spacecraft using electrically charged tethers is explored. The spacecraft’s velocity vector can be modified by interacting with Earth’s magnetic field. Through this method, a spacecraft can maintain an orbit indefinitely by reboosting without the constraint of limited propellant. The spacecraft-tether system dynamics in low Earth orbit are simulated to evaluate the effects of Lorentz force and torques on translational motion. With 500-meter tethers charged with a 1-amp current, a 100-kg spacecraft can gain 250 m of altitude in one orbit. By evaluating the combined effects of Lorenz force and the coupled effects of Lorentz torque propagation through Euler’s moment equation and Newton’s translational motion equations, the simulated spacecraft-tether system can orbit indefinitely at altitudes as low as 275 km. Through a rare evaluation of the nonlinear coupling of the six differential equations of motion, the one finding is that an electrodynamic tether can be used to maintain a spacecraft’s orbit height indefinitely for very low Earth orbits. However, the reboost maneuver is inefficient for high inclination orbits and has high electrical power requirement. To overcome greater aerodynamic drag at lower altitudes, longer tethers with higher power draw are required.


2021 ◽  
Author(s):  
Vidvuds Beldavs

&lt;p&gt;In this paper I will present scenarios of lunar industrial development to 2050 and corresponding development of markets for lunar resources in Earth orbits, cislunar space, the lunar surface, as well as the likely emergence of industrial development in Mars orbits based on use of lunar resources. I will also examine actions needed in the 2021-2030 timeframe to make this possible.&lt;/p&gt; &lt;p&gt;Given that targets for launch to LEO from Earth in the range of $100 to $200/ kg. can be achieved before 2040 the Moon can emerge as the low-cost source of materials for industrial and commercial development in the Earth-Moon system and beyond. &amp;#160;Key assumptions that I will examined include the following:&lt;/p&gt; &lt;ul&gt; &lt;li&gt;Structures in Earth orbits and cislunar space will be assembled in orbit from components manufactured in space.&lt;/li&gt; &lt;li&gt;Space tourism with large-scale space resorts in low Earth orbits will give way to space settlements housing thousands and more as mortgage financing is developed to finance their development.&lt;/li&gt; &lt;li&gt;The Moon will emerge as the low-cost site for materials for space manufacturing. Many important materials are on or near the surface and there is high probability of concentrations of high value materials being discovered in accessible locations including potentially the Aitken Basin anomaly [1}. , and the vacuum and fractional gravity of the Moon promises launch costs from the Moon to Earth orbits that are a fraction of launch from Earth.&lt;/li&gt; &lt;li&gt;Lunar materials are likely to emerge as a primary source for industrial and commercial developments in Mars orbits. The delta-v of shipment to Mars orbit from the lunar surface is less than launch from Mars [1]. Industrial development in Mars orbit using lunar materials can lower costs and improve effectiveness of operations on Mars.&lt;/li&gt; &lt;li&gt;It will become increasingly urgent to limit launch of spacecraft to LEO from Earth as congestion from satellite mega constellations increases and suborbital intercontinental transportation takes off following the model proposed by Elon Musk.&lt;/li&gt; &lt;li&gt;Climate change is a threat to all countries and urgent action is called for to limit or eliminate large scale resource extraction on Earth, as well as to limit launches through the atmosphere. This factor will speed lunar industrial development and potentially open opportunities for some lunar derived materials to compete in terrestrial markets.&lt;/li&gt; &lt;li&gt;A rules-based order agreed to by all states involved in outer space development will emerge by 2030. Billionaires can speed up development but international cooperation and agreement on governance policies is necessary to assure self-sustaining lunar industrial development.&lt;/li&gt; &lt;/ul&gt; &lt;p&gt;Notes&lt;/p&gt; &lt;p&gt;[1] An excellent overview of lunar materials that also includes discussion of processing options is Ian A. Crawford, &amp;#8220;Lunar resources: A review&amp;#8221;, Progress in Physical Geography, 2015, Vol. 39(2) 137&amp;#8211;167, retrieved from http://www.homepages.ucl.ac.uk/~ucfbiac/Lunar_resources_review_published.pdf . Pg. 149 summarizes findings on the Aitken Basin anomaly suggesting that a large metallic asteroid approximately 110 meters across may be buried there. The Psyche 16 metallic asteroid that has drawn media attention is 200 meters - 16 Psyche - Wikipedia&lt;/p&gt; &lt;p&gt;[2]https://space.stackexchange.com/questions/2046/delta-v-chart-mathematics&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt;


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 925
Author(s):  
Yan Zhang ◽  
Jinjiang Yu ◽  
Junyu Chen ◽  
Jizhang Sang

The accuracy of the atmospheric mass density is one of the most important factors affecting the orbital precision of spacecraft at low Earth orbits (LEO). Although there are a number of empirical density models available to use in the orbit determination and prediction of LEO spacecraft, all of them suffer from errors of various degrees. A practical way to reduce the error of a particular model is to calibrate the model using precise density data or tracking data. In this paper, a long short-term memory (LSTM) neural network is proposed to calibrate the NRLMSISE-00 density model, in which the densities derived from spaceborne accelerometer data are the main input. The resulted LSTM-NRL model, calibrated using the accelerometer data from Challenging Minisatellite Payload (CHAMP) satellite, is extensively experimented to evaluate the calibration performance. With data in one month to train the LSTM-NRL model, the model is shown to effectively reduce the root mean square error of the model densities outside the training window by more than 40% in various time spans and space weather environment. The LSTM-NRL model is also shown to have remarkable transferring performance when it is applied along the GRACE satellite orbits.


Sign in / Sign up

Export Citation Format

Share Document