Triphenylene-modified chitosan: novel high efficient sorbent for cationic and anionic dyes

Cellulose ◽  
2013 ◽  
Vol 20 (2) ◽  
pp. 895-906 ◽  
Author(s):  
Fafu Yang ◽  
Xiaoyan Bai ◽  
Bingting Xu ◽  
Hongyu Guo
2009 ◽  
Vol 4 (4) ◽  
pp. 287-295 ◽  
Author(s):  
Yuqing Ge ◽  
Yu Zhang ◽  
Shiying He ◽  
Fang Nie ◽  
Gaojun Teng ◽  
...  

2021 ◽  
Author(s):  
Jia Lin ◽  
Yude Zhang ◽  
Qian Zhang ◽  
Jinli Shang ◽  
Fuyao Deng

Abstract A benzene sulfonate modified hydrotalcite (SO3-LDH) was synthesized by a facile one-pot hydrothermal technique, which can efficiently remove methyl orange (MO), Congo red (CR) and orange II (OII) from aqueous solution. After modified by benzene sulfonate, the microstructure of hydrotalcite changes obviously, from the cellular structure to the stacking structure formed by the face-face contact of hydrotalcite nanosheets, which resulted in much more exchangeable nitrate ions to remain in the interlayer space. The pre-insertion of benzene sulfonate as a pillar expanded the interlayer gallery, which facilitated the pollutant anions (MO, CR and OII) into the interlayer of LDH in the subsequent adsorption process. The maximum adsorption capacity of SO3-LDH for MO, CR and OII was 4200.8 mg/g, 1252.0 mg/g and 1670.6 mg/g respectively, which is approximately 1.86 times, 1.8 times and 2.32 times that of the pristine NO3-LDH, respectively. The removal mechanism of anionic dyes was determined as anion exchange between NO3− ions and dye molecules. The adsorption behavior for MO and OII is multilayer adsorption, while the adsorption behavior for CR is monolayer adsorption. The adsorption process mainly was controlled by the chemical bonding between the dye molecules and adsorbent active sites. The benzene sulfonate modified LDH has a great potential to be used as a high-efficient adsorbent to remove anionic dyes from aqueous solution.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 29-35 ◽  
Author(s):  
PEDRAM FATEHI ◽  
LIYING QIAN ◽  
RATTANA KITITERAKUN ◽  
THIRASAK RIRKSOMBOON ◽  
HUINING XIAO

The application of an oppositely charged dual polymer system is a promising approach to enhance paper strength. In this work, modified chitosan (MCN), a cationic polymer, and carboxymethyl cellulose (CMC), an anionic polymer, were used sequentially to improve paper strength. The adsorption of MCN on cellulose fibers was analyzed via polyelectrolyte titration. The formation of MCN/CMC complex in water and the deposition of this complex on silicon wafers were investigated by means of atomic force microscope and quasi-elastic light scattering techniques. The results showed that paper strength was enhanced slightly with a layer-by-layer assembly of the polymers. However, if the washing stage, which was required for layer-by-layer assembly, was eliminated, the MCN/CMC complex was deposited on fibers more efficiently, and the paper strength was improved more significantly. The significant improvement was attributed to the extra development of fiber bonding, confirmed further by scanning electron microscope observation of the bonding area of fibers treated with or without washing. However, the brightness of papers was somewhat decreased by the deposition of the complex on fibers. Higher paper strength also was achieved using rapid drying rather than air drying.


Vestnik MEI ◽  
2018 ◽  
Vol 6 (6) ◽  
pp. 33-42
Author(s):  
Pavel V. Roslyakov ◽  
◽  
Bronislav G. Grisha ◽  
Igor L. Ionkin ◽  
Mikhail N. Zaichenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document