polyelectrolyte titration
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3208 ◽  
Author(s):  
Marjana Simonič ◽  
Lidija Fras Zemljič

In this paper, the aim of the research was to obtain a highly efficient wool-based sorbent for the removal of zinc Zn(II) from wastewater. To increase the functional groups for metal binding, the wool was functionalized with chitosan. Chitosan has amino groups through which metals can be complexed easily to chelates. The physical and chemical modification of chitosan on wool was performed to analyze the influence of the coating bond on the final ability of the wool to remove metals. The presence of functional chitosan groups onto wool after adsorption was verified by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT-IR) spectra. The effective binding of chitosan to wool was also determined by potentiometric and polyelectrolyte titration methods. The latter titration was used to analyze the chitosan desorption. The main part of the study was the sorption of Zn(II) on natural and functionalized wool. The influence was investigated as a function of contact time, pH, metal ion concentration and temperature on the sorption process. The absorbent with the highest concentration of protonated amino groups (607.7 mmol/kg) and responding sorption capacity of 1.52 mg/g was obtained with wool physically modified by a macromolecular chitosan solution (1%) at pH = 7. Adsorption of Zn(II) onto pristine and modified wool corresponded to pseudo-second order kinetics (R2 > 0.9884). The Langmuir model was found to be more suitable (R2 > 0.9866) in comparison to the Freundlich model. The Zn(II) sorption process was spontaneous (∆G < 0) and exothermic (∆H < 0). The results found in this study are significant for escalating the possible use of wool modified with polysaccharide coatings as a sustainable source to improve or increase the metal sorption activity of wool.


2020 ◽  
Author(s):  
Nga T. Mai ◽  
Nga T. T. Pham ◽  
Anh T. Q. Nguyen ◽  
Anh T. N. Nguyen ◽  
Anh M. Nguyen ◽  
...  

&lt;p&gt;In soils clay loss by leaching and surface runoff is one of the initial steps increasing the risk of erosion. Here we set out to determine the effect of fine-sized biochar amendment on colloidal dynamics of soil clay, with the aim of answering whether biochar addition enhances or curbs soil erosion. Fine-sized biochar samples were prepared from fern Dicranopteris linearis&amp;#8217;s biomass under non-biochar-oriented pyrolysis (open heating) and biochar-oriented pyrolysis (N&lt;sub&gt;2&lt;/sub&gt;-supported heating) over a temperature range from 400 to 900&amp;#176;C. The clay fraction (&lt; 2 &amp;#181;m) separated from a clay-rich soil in a hilly area of the Red River basin containing relatively high amounts of kaolinite was tested for its dispersion properties under the presence of the prepared biochars. Surface charge of biochar-soil clay mixtures was determined by polyelectrolyte titration using a particle charge detector, while corresponding colloidal properties of the mixtures were examined by the test tube method. Both, the soil clay fraction and biochar samples showed strongly negative surface charge and their surface charge was variable depending on pH. In a pH range from 3 to 10 and at an electrolyte background of 0.01 M NaCl, surface charge of the clay fraction decreased from -1.68 to -44.75 mmol&lt;sub&gt;c&lt;/sub&gt; Kg&lt;sup&gt;-1&lt;/sup&gt;, while the biochars surface charge varied from -0.6 to -48.8 mmol&lt;sub&gt;c&lt;/sub&gt; Kg&lt;sup&gt;-1&lt;/sup&gt;. Soil clays were more strongly dispersed in the presence of biochars by increasing electrostatic repulsive forces. The biochar preparation method had a crucial role for surface charge properties of biochars and in consequence colloidal dynamics of biochar-clay mixtures. The N&lt;sub&gt;2&lt;/sub&gt;-supported pyrolysis at lower temperatures does not increase charge density but creates a more porous structure, thereby increasing the total negative net charges. As a result, the N&lt;sub&gt;2&lt;/sub&gt;-supported biochars favor clay dispersion more effectively, while the open-pyrolysis biochars showed lesser effects. Our results indicate that fine-sized biochar amendments generally enhance the risk of clay loss, however, such techniques for creating low-charged biochars can help to decrease clay dispersibility when applying biochar for soil.&lt;/p&gt;


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3585
Author(s):  
Madalina Elena Culica ◽  
Kornela Kasperczyk ◽  
Raluca Ioana Baron ◽  
Gabriela Biliuta ◽  
Ana Maria Macsim ◽  
...  

This paper proposes a convenient route to oxidize the –CH2–OH groups in the water-soluble pullulan, using a new catalytic polymer-supported N-hydroxyphthalimide (NHPI) immobilized on polystyrene. The protocol involves the presence of sodium hypochlorite and sodium bromide. The conversion is possible at room temperature, atmospheric pressure, and pH = 10. The characterization of both the catalysts and oxidized pullulan was done using NMR and FTIR methods. Using polyelectrolyte titration with end-point indication by means of a particle-charge detector (PCD), we were able to assess the degree of electrokinetic charge in all oxidized samples as a consequence of the conversion of the –CH2–OH group into –COOH moieties. The possibility of recovery and recycling of the polymer-supported NHPI catalyst was tested for up to four cycles, since the morphological analyses performed on the catalysts using SEM revealed no significant changes.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 183 ◽  
Author(s):  
Vikramjit Rathee ◽  
Hythem Sidky ◽  
Benjamin Sikora ◽  
Jonathan Whitmer

The titration behavior of weak polyelectrolytes is of high importance, due to their uses in new technologies including nanofiltration and drug delivery applications. A comprehensive picture of polyelectrolyte titration under relevant conditions is currently lacking, due to the complexity of systems involved in the process. One must contend with the inherent structural and solvation properties of the polymer, the presence of counterions, and local chemical equilibria enforced by background salt concentration and solution acidity. Moreover, for these cases, the systems of interest have locally high concentrations of monomers, induced by polymer connectivity or confinement, and thus deviate from ideal titration behavior. This work furthers knowledge in this limit utilizing hybrid Monte Carlo–Molecular Dynamics simulations to investigate the influence of salt concentration, pK a , pH, and counterion valence in determining the coil-to-globule transition of poorly solvated weak polyelectrolytes. We characterize this transition at a range of experimentally relevant salt concentrations and explicitly examine the role multivalent salts play in determining polyelectrolyte ionization behavior and conformations. These simulations serve as an essential starting point in understanding the complexation between weak polyelectrolytes and ion rejection of self-assembled copolymer membranes.


2017 ◽  
Vol 88 (22) ◽  
pp. 2519-2531 ◽  
Author(s):  
Lidija Fras Zemljič ◽  
Zdenka Peršin ◽  
Olivera Šauperl ◽  
Andreja Rudolf ◽  
Mirjana Kostić

Adsorption of chitosan nanoparticles with embedded iodine was implemented onto pristine and oxidized cellulose viscose fabrics in order to introduce antimicrobial and antioxidative functionalization. The adsorption capacity, charging behavior and electrokinetic response of differently functionalized viscose at different pH values were analyzed by determining their zeta potential. Desorption studies, besides zeta potential measurements, were supported by polyelectrolyte titration. Finally, the antimicrobial properties were evaluated by the standard ASTM E2149 method, whilst antioxidative properties were determined by 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation decolorization assay. It was found that the oxidation of viscose fabrics further modified by chitosan–iodine nanoparticles dispersion was a very promising functionalization process, providing good coating stability along with antimicrobial and antioxidant properties.


Holzforschung ◽  
2017 ◽  
Vol 71 (7-8) ◽  
pp. 649-658 ◽  
Author(s):  
Chao Chen ◽  
Josefin Illergård ◽  
Lars Wågberg ◽  
Monica Ek

AbstractContact-active surfaces have been created by means of the layer-by-layer (LbL) modification technique, which is based on previous observations that cellulose fibers treated with polyelectrolyte multilayers with polyvinylamine (PVAm) are perfectly protected against bacteria. Several different cationic polyelectrolytes were applied, including PVAm, two different poly(diallyl dimethyl ammonium chloride) polymers and two different poly(allylamine hydrochloride) polymers. The polyelectrolytes were self-organized in one or three layers on cellulosic fibers in combination with polyacrylic acid by the LbL method, and their antibacterial activities were evaluated. The modified cellulose fibers showed remarkable bacterial removal activities and inhibited bacterial growth. It was shown that the interaction between bacteria and modified fibers is not merely a charge interaction because a certain degree of bacterial cell deformation was observed on the modified fiber surfaces. Charge properties of the modified fibers were determined based on polyelectrolyte titration and zeta potential measurements, and a correlation between high charge density and antibacterial efficiency was observed for the PVAm and PDADMAC samples. It was demonstrated that it is possible to achieve antibacterial effects by the surface modification of cellulosic fibers via the LbL technique with different cationic polyelectrolytes.


Author(s):  
Simona Schwarz ◽  
Christine Steinbach ◽  
Dana Schwarz ◽  
Gudrun Petzold ◽  
Evgenia Romanova ◽  
...  

Clay Minerals ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 1-13 ◽  
Author(s):  
J. Walsch ◽  
S. Dultz

AbstractSoil solution chemistry, especially pH and the presence of multivalent ions, affects the surface charge (SC) of Fe oxides and accordingly colloidal stability and sorption properties. The SC of synthetic goethite and hematite was quantified in the presence of different electrolytes (NaCl, CaCl2, Na2SO4and CaSO4) by combining the streaming potential with polyelectrolyte titration. The point of zero charge (PZC) for goethite was observed at pH 8.2 and the stability field around the PZC, where colloids are flocculated, is more extended (±1 pH unit) than that of hematite with a PZC at pH 7.1 (±0.5 pH unit). The SC decreases with increasing SO4concentration, indicating adsorption of SO4on the oxide, whereas the presence of Ca increases the SC. At pH 4, the addition of 0.1 mmol l–1Na2SO4induced a decrease in SC from 1.5 to 0.380 μmolcm–2for goethite and from 0.85 to 0.42 μmolcm–2for hematite. In a suspension with 0.1 mmol l–1Na2SO4, the number of colloids is already reduced, and both oxides flocculate rapidly and completely at >0.5 mmol l–1Na2SO4. While the addition of SO4did not affect charge titrations with the cationic polyelectrolyte, the anionic polyelectrolyte formed complexes with Ca, resulting in an overestimation of positive SC. The electrolyte CaSO4is most efficient at keeping goethite and hematite in the pH range 4–10 in the flocculated state. Besides pH, the presence of multivalent ions should also be considered when predicting colloid mediated transport and adsorption properties of anionic substances by Fe oxides in soil systems.


Sign in / Sign up

Export Citation Format

Share Document