Canonical Transient Receptor Potential Channel 3 Contributes to Febrile Seizure Inducing Neuronal Cell Death and Neuroinflammation

2018 ◽  
Vol 38 (6) ◽  
pp. 1215-1226 ◽  
Author(s):  
Dan Sun ◽  
Hui Ma ◽  
Jiehui Ma ◽  
Jing Wang ◽  
Xiaolong Deng ◽  
...  
2005 ◽  
Vol 171 (4) ◽  
pp. 685-694 ◽  
Author(s):  
Tao Wang ◽  
Yuchen Jiao ◽  
Craig Montell

Drosophila transient receptor potential (TRP) serves dual roles as a cation channel and as a molecular anchor for the PDZ protein, INAD (inactivation no afterpotential D). Null mutations in trp cause impairment of visual transduction, mislocalization of INAD, and retinal degeneration. However, the impact of specifically altering TRP channel function is not known because existing loss-of-function alleles greatly reduce protein expression. In the current study we describe the isolation of a set of new trp alleles, including trp14 with an amino acid substitution juxtaposed to the TRP domain. The trp14 flies stably express TRP and display normal molecular anchoring, but defective channel function. Elimination of the anchoring function alone in trpΔ1272, had minor effects on retinal morphology whereas disruption of channel function caused profound light-induced cell death. This retinal degeneration was greatly suppressed by elimination of the Na+/Ca2+ exchanger, CalX, indicating that the cell death was due primarily to deficient Ca2+ entry rather than disruption of the TRP-anchoring function.


2015 ◽  
Vol 145 (5) ◽  
pp. 419-430 ◽  
Author(s):  
Balázs Tóth ◽  
Iordan Iordanov ◽  
László Csanády

Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel implicated in postischemic neuronal cell death, leukocyte activation, and insulin secretion, is activated by intracellular ADP ribose (ADPR). In addition, the pyridine dinucleotides nicotinamide-adenine-dinucleotide (NAD), nicotinic acid–adenine-dinucleotide (NAAD), and NAAD-2′-phosphate (NAADP) have been shown to activate TRPM2, or to enhance its activation by ADPR, when dialyzed into cells. The precise subset of nucleotides that act directly on the TRPM2 protein, however, is unknown. Here, we use a heterologously expressed, affinity-purified–specific ADPR hydrolase to purify commercial preparations of pyridine dinucleotides from substantial contaminations by ADPR or ADPR-2′-phosphate (ADPRP). Direct application of purified NAD, NAAD, or NAADP to the cytosolic face of TRPM2 channels in inside-out patches demonstrated that none of them stimulates gating, or affects channel activation by ADPR, indicating that none of these dinucleotides directly binds to TRPM2. Instead, our experiments identify for the first time ADPRP as a true direct TRPM2 agonist of potential biological interest.


2019 ◽  
Vol 150 (6) ◽  
pp. 678-690 ◽  
Author(s):  
Stefanie Zeitler ◽  
Lian Ye ◽  
Aksana Andreyeva ◽  
Fabian Schumacher ◽  
Juliana Monti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document