Energy efficient job scheduling with workload prediction on cloud data center

2018 ◽  
Vol 21 (3) ◽  
pp. 1581-1593 ◽  
Author(s):  
Xiaoyong Tang ◽  
Xiaoyi Liao ◽  
Jie Zheng ◽  
Xiaopan Yang
Author(s):  
R. Jeyarani ◽  
N. Nagaveni ◽  
Satish Kumar Sadasivam ◽  
Vasanth Ram Rajarathinam

Cloud Computing provides on-demand access to a shared pool of configurable computing resources. The major issue lies in managing extremely large agile data centers which are generally over provisioned to handle unexpected workload surges. This paper focuses on green computing by introducing Power-Aware Meta Scheduler, which provides right fit infrastructure for launching virtual machines onto host. The major challenge of the scheduler is to make a wise decision in transitioning state of the processor cores by exploiting various power saving states inherent in the recent microprocessor technology. This is done by dynamically predicting the utilization of the cloud data center. The authors have extended existing cloudsim toolkit to model power aware resource provisioning, which includes generation of dynamic workload patterns, workload prediction and adaptive provisioning, dynamic lifecycle management of random workload, and implementation of power aware allocation policies and chip aware VM scheduler. The experimental results show that the appropriate usage of different power saving states guarantees significant energy conservation in handling stochastic nature of workload without compromising the performance, both when the data center is in low as well as moderate utilization.


Author(s):  
Zhen Li ◽  
Bin Chen ◽  
Xiaocheng Liu ◽  
Dandan Ning ◽  
Xiaogang Qiu

Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center. These applications are submitted to the cloud in the form of simulation jobs. Meanwhile, the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service. In this paper, we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center, named simulation execution as a service (SimEaaS). It aims at releasing users from complex simulation running settings, while guaranteeing the QoS requirements adaptively. Furthermore, a novel job scheduling algorithm named adaptive deadline-aware job size adjustment (ADaSA) algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS. ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively, while guaranteeing that jobs’ deadline requirements are not violated. Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA. The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time (up to 90%) and bounded slow down (up to 95%), while obtains approximately equivalent deadline-missed rate. ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate (up to 60%).


Sign in / Sign up

Export Citation Format

Share Document