Management units of the endangered herb Primula sieboldii based on microsatellite variation among and within populations throughout Japan

2007 ◽  
Vol 10 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Masanori Honjo ◽  
Naoko Kitamoto ◽  
Saneyoshi Ueno ◽  
Yoshihiko Tsumura ◽  
Izumi Washitani ◽  
...  
2003 ◽  
Vol 9 (1) ◽  
pp. 261-266 ◽  
Author(s):  
Jobs Karl Larsson ◽  
Yue-Hua Sun ◽  
Yun Fang ◽  
Gernot Segelbacher ◽  
Jacob Höglund

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 747-756 ◽  
Author(s):  
Paul Sunnucks ◽  
Phillip R England ◽  
Andrea C Taylor ◽  
Dinah F Hales

Abstract Single-locus microsatellite variation correlated perfectly with chromosome number in Sitobion miscanthi aphids. The microsatellites were highly heterozygous, with up to 10 alleles per locus in this species. Despite this considerable allelic variation, only seven different S. miscanthi genotypes were discovered in 555 individuals collected from a wide range of locations, hosts and sampling periods. Relatedness between genotypes suggests only two successful colonizations of Australia. There was no evidence for genetic recombination in 555 S. miscanthi so the occurrence of recent sexual reproduction must be near zero. Thus diversification is by mutation and chromosomal rearrangement alone. Since the aphids showed no sexual recombination, microsatellites can mutate without meiosis. Five of seven microsatellite differences were a single repeat unit, and one larger jump is likely. The minimum numbers of changes between karyotypes corresponded roughly one-to-one with microsatellite allele changes, which suggests very rapid chromosomal evolution. A chromosomal fission occurred in a cultured line, and a previously unknown chromosomal race was detected. All 121 diverse S. near fragariae were heterozygous but revealed only one genotype. This species too must have a low rate of sexual reproduction and few colonizations of Australia.


Author(s):  
B Fernández Rubio ◽  
H Acosta García ◽  
M Ladrón De Guevera García ◽  
M Alonso Moreno

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1285-1298 ◽  
Author(s):  
Bret A Payseur ◽  
Michael W Nachman

Abstract Background (purifying) selection on deleterious mutations is expected to remove linked neutral mutations from a population, resulting in a positive correlation between recombination rate and levels of neutral genetic variation, even for markers with high mutation rates. We tested this prediction of the background selection model by comparing recombination rate and levels of microsatellite polymorphism in humans. Published data for 28 unrelated Europeans were used to estimate microsatellite polymorphism (number of alleles, heterozygosity, and variance in allele size) for loci throughout the genome. Recombination rates were estimated from comparisons of genetic and physical maps. First, we analyzed 61 loci from chromosome 22, using the complete sequence of this chromosome to provide exact physical locations. These 61 microsatellites showed no correlation between levels of variation and recombination rate. We then used radiation-hybrid and cytogenetic maps to calculate recombination rates throughout the genome. Recombination rates varied by more than one order of magnitude, and most chromosomes showed significant suppression of recombination near the centromere. Genome-wide analyses provided no evidence for a strong positive correlation between recombination rate and polymorphism, although analyses of loci with at least 20 repeats suggested a weak positive correlation. Comparisons of microsatellites in lowest-recombination and highest-recombination regions also revealed no difference in levels of polymorphism. Together, these results indicate that background selection is not a major determinant of microsatellite variation in humans.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Marlene Marques ◽  
Keith M. Reynolds ◽  
Susete Marques ◽  
Marco Marto ◽  
Steve Paplanus ◽  
...  

Forest management planning can be challenging when allocating multiple ecosystem services (ESs) to management units (MUs), given the potentially conflicting management priorities of actors. We developed a methodology to spatially allocate ESs to MUs, according to the objectives of four interest groups—civil society, forest owners, market agents, and public administration. We applied a Group Multicriteria Spatial Decision Support System approach, combining (a) Multicriteria Decision Analysis to weight the decision models; (b) a focus group and a multicriteria Pareto frontier method to negotiate a consensual solution for seven ESs; and (c) the Ecosystem Management Decision Support (EMDS) system to prioritize the allocation of ESs to MUs. We report findings from an application to a joint collaborative management area (ZIF of Vale do Sousa) in northwestern Portugal. The forest owners selected wood production as the first ES allocation priority, with lower priorities for other ESs. In opposition, the civil society assigned the highest allocation priorities to biodiversity, cork, and carbon stock, with the lowest priority being assigned to wood production. The civil society had the highest mean rank of allocation priority scores. We found significant differences in priority scores between the civil society and the other three groups, highlighting the civil society and market agents as the most discordant groups. We spatially evaluated potential for conflicts among group ESs allocation priorities. The findings suggest that this approach can be helpful to decision makers, increasing the effectiveness of forest management plan implementation.


Sign in / Sign up

Export Citation Format

Share Document