scholarly journals A Participatory and Spatial Multicriteria Decision Approach to Prioritize the Allocation of Ecosystem Services to Management Units

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 747
Author(s):  
Marlene Marques ◽  
Keith M. Reynolds ◽  
Susete Marques ◽  
Marco Marto ◽  
Steve Paplanus ◽  
...  

Forest management planning can be challenging when allocating multiple ecosystem services (ESs) to management units (MUs), given the potentially conflicting management priorities of actors. We developed a methodology to spatially allocate ESs to MUs, according to the objectives of four interest groups—civil society, forest owners, market agents, and public administration. We applied a Group Multicriteria Spatial Decision Support System approach, combining (a) Multicriteria Decision Analysis to weight the decision models; (b) a focus group and a multicriteria Pareto frontier method to negotiate a consensual solution for seven ESs; and (c) the Ecosystem Management Decision Support (EMDS) system to prioritize the allocation of ESs to MUs. We report findings from an application to a joint collaborative management area (ZIF of Vale do Sousa) in northwestern Portugal. The forest owners selected wood production as the first ES allocation priority, with lower priorities for other ESs. In opposition, the civil society assigned the highest allocation priorities to biodiversity, cork, and carbon stock, with the lowest priority being assigned to wood production. The civil society had the highest mean rank of allocation priority scores. We found significant differences in priority scores between the civil society and the other three groups, highlighting the civil society and market agents as the most discordant groups. We spatially evaluated potential for conflicts among group ESs allocation priorities. The findings suggest that this approach can be helpful to decision makers, increasing the effectiveness of forest management plan implementation.

Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 438 ◽  
Author(s):  
Marco Marto ◽  
Keith Reynolds ◽  
José Borges ◽  
Vladimir Bushenkov ◽  
Susete Marques

This study examines the potential of combining decision support approaches to identify optimal bundles of ecosystem services in a framework characterized by multiple decision-makers. A forested landscape, Zona de Intervenção Florestal of Paiva and Entre-Douro and Sousa (ZIF_VS) in Portugal, is used to test and demonstrate this potential. The landscape extends over 14,388 ha, representing 1976 stands. The property is fragmented into 376 holdings. The overall analysis was performed in three steps. First, we selected six alternative solutions (A to F) in a Pareto frontier generated by a multiple-criteria method within a web-based decision support system (SADfLOR) for subsequent analysis. Next, an aspatial strategic multicriteria decision analysis (MCDA) was performed with the Criterium DecisionPlus (CDP) component of the Ecosystem Management Decision Support (EMDS) system to assess the aggregate performance of solutions A to F for the entire forested landscape with respect to their utility for delivery of ecosystem services. For the CDP analysis, SADfLOR data inputs were grouped into two sets of primary criteria: Wood Harvested and Other Ecosystem Services. Finally, a spatial logic-based assessment of solutions A to F for individual stands of the study area was performed with the NetWeaver component of EMDS. The NetWeaver model was structurally and computationally equivalent to the CDP model, but the key NetWeaver metric is a measure of the strength of evidence that solutions for specific stands were optimal for the unit. We conclude with a discussion of how the combination of decision support approaches encapsulated in the two systems could be further automated in order to rank several efficient solutions in a Pareto frontier and generate a consensual solution.


2013 ◽  
Vol 22 (2) ◽  
pp. 263 ◽  
Author(s):  
T. Packalen ◽  
A. Marques ◽  
J. Rasinmäki ◽  
C. Rosset ◽  
F. Mounir ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1079 ◽  
Author(s):  
Marco Marto ◽  
Keith Reynolds ◽  
José Borges ◽  
Vladimir Bushenkov ◽  
Susete Marques ◽  
...  

In this paper, we present a web-based decision support system (DSS)—wSADfLOR—to facilitate the access of stakeholders to tools that may contribute to enhancing forest management planning. The emphasis is on a web-based architecture and a web graphic user interface (wGUI) that may effectively support the analysis of trade-offs between ecosystem services in order to address participatory and sustainable forest management objectives. For that purpose, the wGUI provides remote access to a management information system, enabling users to analyze environmental and biometric data and topological information as well. Moreover, the wGUI provides remote access to forest simulators so that users may define and simulate prescriptions such as chronological sequences of management options and the corresponding forest ecosystem services outcomes. Remote access to management planning methods is further provided so that users may input their objectives and constraints. The wGUI delivers information about tradeoffs between ecosystem services in the form of decision maps so that users in different locations may negotiate bundles of ecosystem services as well as the plan needed to provide them. The multiple criteria programming routines provide proposals for management plans that may be assessed further, using geographical and alphanumeric information provided by the wGUI. Results for an application to a forested landscape extending to 14,388 ha are presented and discussed. This landscape provides several ecosystem services and the development of its management plan involves multiple stakeholders. Results show that the web-based architecture and the wGUI provide effective access for stakeholders to information about the forest management planning area and to decision support tools that may contribute to addressing complex multi-objective and multiple-decision-maker management planning contexts. They also highlight that the involvement and participation of stakeholders in the design of the web-based architecture contributes to assuring the quality and the usability of the system.


1991 ◽  
Vol 67 (6) ◽  
pp. 622-628 ◽  
Author(s):  
Dan Bulger ◽  
Harold Hunt

The focus of a decision support system is much different from Management Information Systems (MIS) and data-based "decision support systems". Decision support systems, as defined by the authors, focus on decisions and decision makers, and on information. Technology is treated as a tool and data as the raw material. In many traditional systems the focus is on the technology, and the data is the "information", while decision makers are, to some extent, externalized.The purpose of the Forest Management Decision Support System (FMDSS) project is to develop a set of software tools for creating forest management decision support systems. This set of tools will be used to implement a prototype forest management decision support system for the Plonski forest, near Kirkland Lake, Ontario.There are three critical ingredients in building the FMDSS, these are: (1) knowledge of the decision making process, (2) knowledge of the forest, and (3) the functionality of underlying support technology. The growing maturity of the underlying technology provides a tremendous opportunity to develop decision support tools. However, a significant obstacle to building FMDSS has been the diffuse nature of knowledge about forest management decision making processes, and about the forest ecosystem itself. Often this knowledge is spread widely among foresters, technicians, policy makers, and scientists, or is in a form that is not easily amenable to the decision support process. This has created a heavy burden on the project team to gather and collate the knowledge so that it could be incorporated into the function and design of the system. It will be difficult to gauge the success of this exercise until users obtain the software and begin to experiment with its use.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 809 ◽  
Author(s):  
Gintautas Mozgeris ◽  
Vilis Brukas ◽  
Nerijus Pivoriūnas ◽  
Gintautas Činga ◽  
Ekaterina Makrickienė ◽  
...  

Research Highlights: Validating modelling approach which combines global framework conditions in the form of climate and policy scenarios with the use of forest decision support system to assess climate change impacts on the sustainability of forest management. Background and Objectives: Forests and forestry have been confirmed to be sensitive to climate. On the other hand, human efforts to mitigate climate change influence forests and forest management. To facilitate the evaluation of future sustainability of forest management, decision support systems are applied. Our aims are to: (1) Adopt and validate decision support tool to incorporate climate change and its mitigation impacts on forest growth, global timber demands and prices for simulating future trends of forest ecosystem services in Lithuania, (2) determine the magnitude and spatial patterns of climate change effects on Lithuanian forests and forest management in the future, supposing that current forestry practices are continued. Materials and Methods: Upgraded version of Lithuanian forestry simulator Kupolis was used to model the development of all forests in the country until 2120 under management conditions of three climate change scenarios. Selected stand-level forest and forest management characteristics were aggregated to the level of regional branches of the State Forest Enterprise and analyzed for the spatial and temporal patterns of climate change effects. Results: Increased forest growth under a warmer future climate resulted in larger tree dimensions, volumes of growing stock, naturally dying trees, harvested assortments, and also higher profits from forestry activities. Negative impacts were detected for the share of broadleaved tree species in the standing volume and the tree species diversity. Climate change effects resulted in spatially clustered patterns—increasing stand productivity, and amounts of harvested timber were concentrated in the regions with dominating coniferous species, while the same areas were exposed to negative dynamics of biodiversity-related forest attributes. Current forest characteristics explained 70% or more of the variance of climate change effects on key forest and forest management attributes. Conclusions: Using forest decision support systems, climate change scenarios and considering the balance of delivered ecosystem services is suggested as a methodological framework for validating forest management alternatives aiming for more adaptiveness in Lithuanian forestry.


2019 ◽  
Author(s):  
Wangchuk J. ◽  
Choden K. ◽  
Sears R.R. ◽  
Baral H.

2016 ◽  
Vol 167 (4) ◽  
pp. 205-208
Author(s):  
Patrice Eschmann ◽  
Pascal Kohler

Structures for forest management: experience of a cantonal forest service (essay) Over the last ten years, forestry structures in the Canton of Jura have evolved. The management units cover the whole area of the Canton and make it possible for the State and the forest owners to have professional staff at their disposition in the field. However, these structures are small, inflexible, focused on public tasks and not open to change. Various factors, including mergers of communes, or the economic situation, set off a process of restructuring. Change must originate with the owner, while the cantonal authorities should contribute to developing the structures by financial help, advice and exchange of experience. Ideally, public forest owners should combine their forces in management units large and flexible enough, disposing of planning and management rights, and bringing together the various (public) owners. Each unit should have one or more professionals responsible for management and for the tasks delegated by the State.


Sign in / Sign up

Export Citation Format

Share Document