Dynamic wettability alteration in naturally fractured rocks

2019 ◽  
Vol 24 (2) ◽  
pp. 581-591 ◽  
Author(s):  
Mohammad H. Sedaghat ◽  
Siroos Azizmohammadi
2020 ◽  
Vol 47 (1) ◽  
Author(s):  
Parisa Shokouhi ◽  
Jiang Jin ◽  
Clay Wood ◽  
Jacques Rivière ◽  
Benjamin Madara ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hang Su ◽  
Fujian Zhou ◽  
Qing Wang ◽  
Fuwei Yu ◽  
Rencheng Dong ◽  
...  

Summary Enhanced oil recovery (EOR) in fractured carbonate reservoirs is challenging because of the heterogeneous and oil-wet nature. In this work, a new application of using polymer nanospheres (PNSs) and diluted microemulsion (DME) is presented to plug fractures and enhance water imbibition to recover oil from the tight, naturally fractured carbonate reservoirs. DME with different electric charges is compared through contact-angle and core-imbibition tests to evaluate their performances on EOR. The cationic DME is chosen because it has the fastest wettability-alteration rate and thus the highest oil recovery rate. Migration and plugging efficiency tests are conducted to identify the screened particle sizes of PNSs for the target reservoir cores. PNSs with a particle size of 300 nm are demonstrated to have the best performance of in-depth propagation before swelling and plugging after swelling within the naturally fractured cores are used in this study. Then coreflooding experiments are conducted to evaluate the EOR performance when PNSs and DME are used together, and results indicate that the oil recovery rate is increased by 24.3 and 44.1% compared to using PNSs or DME alone. In the end, a microfluidic experiment is carried out to reveal how DME works with PNSs.


2021 ◽  
Author(s):  
Mohammad Sedaghat ◽  
Hossein Dashti

Abstract Wettability is an essential component of reservoir characterization and plays a crucial role in understanding the dominant mechanisms in enhancing recovery from oil reservoirs. Wettability affects oil recovery by changing (drainage and imbibition) capillary pressure and relative permeability curves. This paper aims to investigate the role of wettability in matrix-fracture fluid transfer and oil recovery in naturally fractured reservoirs. Two experimental micromodels and one geological outcrop model were selected for this study. Three relative permeability and capillary pressure curves were assigned to study the role of matrix wettability. Linear relative permeability curves were given to the fractures. A complex system modelling platform (CSMP++) has been used to simulate water and polymer flooding in different wettability conditions. Comparing the micromodel data, CSMP++ and Eclipse validated and verified CSMP++. Based on the results, the effect of wettability alteration during water flooding is stronger than in polymer flooding. In addition, higher matrix-to-fracture permeability ratio makes wettability alteration more effective. The results of this study revealed that although an increase in flow rate decreases oil recovery in water-wet medium, it is independent of flow rate in the oil-wet system. Visualized data indicated that displacement mechanisms are different in oil-wet, mixed-wet and water-wet media. Earlier fracture breakthrough, later matrix breakthrough and generation and swelling of displacing phase at locations with high horizontal permeability contrast are the most important features of enhanced oil recovery in naturally fractured oil-wet rocks.


2019 ◽  
Vol 183 ◽  
pp. 106410 ◽  
Author(s):  
Mehdi Mokhtari ◽  
Fatick Nath ◽  
Asadollah Hayatdavoudi ◽  
Rustam Nizamutdinov ◽  
Shuxian Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document