scholarly journals An efficient ensemble Kalman Filter implementation via shrinkage covariance matrix estimation: exploiting prior knowledge

2021 ◽  
Vol 25 (3) ◽  
pp. 985-1003
Author(s):  
Santiago Lopez-Restrepo ◽  
Elias D. Nino-Ruiz ◽  
Luis G. Guzman-Reyes ◽  
Andres Yarce ◽  
O. L. Quintero ◽  
...  

AbstractIn this paper, we propose an efficient and practical implementation of the ensemble Kalman filter via shrinkage covariance matrix estimation. Our filter implementation combines information brought by an ensemble of model realizations, and that based on our prior knowledge about the dynamical system of interest. We perform the combination of both sources of information via optimal shrinkage factors. The method exploits the rank-deficiency of ensemble covariance matrices to provide an efficient and practical implementation of the analysis step in EnKF based formulations. Localization and inflation aspects are discussed, as well. Experimental tests are performed to assess the accuracy of our proposed filter implementation by employing an Advection Diffusion Model and an Atmospheric General Circulation Model. The experimental results reveal that the use of our proposed filter implementation can mitigate the impact of sampling noise, and even more, it can avoid the impact of spurious correlations during assimilation steps.




2020 ◽  
Vol 12 (19) ◽  
pp. 3195
Author(s):  
Hossein Aghababaei

Synthetic aperture radar (SAR) tomography has shown great potential in multi-dimensional monitoring of urban infrastructures and detection of their possible slow deformations. Along this line, undeniable improvements in SAR tomography (TomoSAR) detection framework of multiple permanent scatterers (PSs) have been observed by the use of a multi-looking operation that is the necessity for data’s covariance matrix estimation. This paper attempts to further analyze the impact of a robust multi-looking operation in TomoSAR PS detection framework and assess the challenging issues that exist in the estimation of the covariance matrix of large stack data obtained from long interferometric time series acquisition. The analyses evaluate the performance of non-local covariance matrix estimation approaches in PS detection framework using the super-resolution multi-looked Generalized Likelihood Ratio Test (GLRT). Experimental results of multi-looking impact assessment are provided using two datasets acquired by COSMO-SkyMED (CSK) and TerraSAR-X (TSX) over Tehran, Iran, and Toulouse, France, respectively. The results highlight that non-local estimation of the sample covariance matrix allows revealing the presence of the scatterers, that may not be detectable using the conventional local-based framework.



2004 ◽  
Vol 21 (11) ◽  
pp. 1689-1700 ◽  
Author(s):  
P. M. Lyster ◽  
J. Guo ◽  
T. Clune ◽  
J. W. Larson

Abstract This paper quantifies the computational complexity and parallel scalability of two algorithms for four-dimensional data assimilation (4DDA) at NASA's Global Modeling and Assimilation Office (GMAO). The first, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space-based analysis system, the Physical-Space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems but is used at NASA for climate research. The second, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have more than 106 variables; therefore, the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem will require petaflop s−1 computing to achieve effective throughput for scientific research.



Sign in / Sign up

Export Citation Format

Share Document