On a Differential Equation with a Higher-Order Partial Derivative in Three-Dimensional Space

2005 ◽  
Vol 41 (5) ◽  
pp. 733-738
Author(s):  
E. A. Utkina
2020 ◽  
pp. short27-1-short27-9
Author(s):  
Denis Voloshinov ◽  
Alexandra Solovjeva

The article is devoted to the consideration of a number of theoretical questions of projective geometry related to specifying and displaying imaginary objects, especially, conics. The lack of development of appropriate constructive schemes is a significant obstacle to the study of quadratic images in three-dimensional space and spaces of higher order. The relationship between the two circles, established by the inversion operation with respect to the other two circles, in particular, one of which is imaginary, allows obtain a simple and effective method for indirect setting of imaginary circles in a planar drawing. The application of the collinear transformation to circles with an imaginary radius also makes it possible to obtain unified algorithms for specifying and controlling imaginary conics along with usual real second-order curves. As a result, it allows eliminate exceptional situations that arise while solving problems with quadratic images in spaces of second and higher order.


Geophysics ◽  
1980 ◽  
Vol 45 (5) ◽  
pp. 964-967 ◽  
Author(s):  
Theodor Krey

“Wavefront curvatures in three‐dimensional laterally inhomogeneous media with curved interfaces” (Hubral, 1980, this issue) shows a differential equation [formula (4.1)] which describes the alteration of the wavefront curvature matrix along a raypath in the case of an isotropic velocity v which is an arbitrary function of the locus in the three‐dimensional space. Hubral derives his equation by referring to papers of Popov and Pšenčik (1976, 1978) and Hubral (1979).


1926 ◽  
Vol 45 (3) ◽  
pp. 230-244 ◽  
Author(s):  
Marion C. Gray

The differential equation of the conduction of heat in ordinary three-dimensional space is generally written in the formwhere v denotes the temperature of the medium at time t. For a medium in which the temperature varies only in one direction, e.g. an infinite cylinder with the temperature varying along the axis, the equation is


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 354
Author(s):  
Zouhair Diab ◽  
Juan L. G. Guirao ◽  
Juan A. Vera

The purpose of the present paper is to study the presence of bifurcations of zero-Hopf type at a generalized Genesio differential equation. More precisely, by transforming such differential equation in a first-order differential system in the three-dimensional space R3, we are able to prove the existence of a zero-Hopf bifurcation from which periodic trajectories appear close to the equilibrium point located at the origin when the parameters a and c are zero and b is positive.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document