scholarly journals Monitoring for glaucoma progression with SAP, electroretinography (PERG and PhNR) and OCT

Author(s):  
Barbara Cvenkel ◽  
Maja Sustar ◽  
Darko Perovšek

Abstract Purpose To investigate the value of pattern electroretinography (PERG) and photopic negative response (PhNR) in monitoring glaucoma compared to standard clinical tests (standard automated perimetry (SAP) and clinical optic disc assessment) and structural measurements using spectral-domain OCT. Methods A prospective study included 32 subjects (32 eyes) with ocular hypertension, suspect or early glaucoma monitored for progression with clinical examination, SAP, PERG, PhNR and OCT for at least 4 years. Progression was defined clinically by the documented change of the optic disc and/or significant visual field progression (EyeSuite™ trend analysis). One eye per patient was included in the analysis. Results During the follow-up, 13 eyes (40.6%) showed progression, whereas 19 remained stable. In the progressing group, all parameters showed significant worsening over time, except for the PhNR, whereas in the stable group only the OCT parameters showed a significant decrease at the last visit. The trend of change over time using linear regression was steepest for the OCT parameters. At baseline, only the ganglion cell complex (GCC) and peripapillary retinal nerve fibre (pRNFL) thicknesses significantly discriminated between the stable and progressing eyes with the area under the ROC curve of 0.72 and 0.71, respectively. The inter-session variability for the first two visits in the stable group was lower for OCT (% limits of agreement within ± 17.4% of the mean for pRNFL and ± 3.6% for the GCC thicknesses) than for ERG measures (within ± 35.9% of the mean for PERG N95 and ± 59.9% for PhNR). The coefficient of variation for repeated measurements in the stable group was 11.9% for PERG N95 and 23.6% for the PhNR, while it was considerably lower for all OCT measures (5.6% for pRNFL and 1.7% for GCC thicknesses). Conclusions Although PERG and PhNR are sensitive for early detection of glaucomatous damage, they have limited usefulness in monitoring glaucoma progression in clinical practice, mainly due to high inter-session variability. On the contrary, OCT measures show low inter-session variability and might have a predicting value for early discrimination of progressing cases.

2021 ◽  
Vol 18 (4) ◽  
pp. 857-865
Author(s):  
N. I. Kurysheva ◽  
L. V. Lepeshkina

Purpose — to study morphological and functional changes in the detection of primary glaucoma progression.Patients and methods. 128 patients (128 eyes, among them — 64 eyes with primary open angle glaucoma (POAG) and 64 with primary angle closure glaucoma (PACG)) with the initial MD of –6.0 dB were examined at the Ophthalmology Center of the FMBA of Russia from May 2016 to November 2019. The values of corneal-compensated IOP were also considered: minimal (IOPmin), peak (IOPmax) and its fluctuations (IOPfluct). The progression was measured using standard automated perimetry (SAP) and spectral-domain OCT (SD-OCT). During the observation period, each patient received the average of 8.42 ± 2.08 SAP and SD-OCT. Progressive thinning of the retinal nerve fiber layer (RNFL) and its ganglion cell complex (GCC) were evaluated using SD-OCT. If RNFL and/or GCC had a trend of significant (p < 0.05) thinning, the eye was classified as having the SD-OCT progression. The correlation between the rate of progression detected by SAP (ROP1) using thinning of RNFL (ROP2) and GCC (ROP3) with other clinical parameters was analyzed.Results and discussion. Glaucoma progression was detected in 73 eyes. While the isolated use of SAP did not allow detecting progression, it was possible to detect it in 39 % cases by SD-OCT. The combination of both methods allowed detecting progression in 57 %. In both forms, ROP1 correlated with IOPmin: in PACG r = 0.41, p = 0.023 and in POAG r = 0.43, p = 0.016. In PACG, ROP2 and ROP3 correlated with the foveal choroid thickness: r = 0.46, p = 0.019 and r = 0.47, p = 0.009, respectively. At the same time, ROP3 was associated with peak IOP (r = –0.402, p = 0.025); the correlation of peak IOP with its fluctuations amounted to 0.7 (p < 0.001).Conclusion. SD-OCT is more informative than SAP in determining the progression of the initial primary glaucoma. The combination of these two methods 1.5 times increases the possibility of detecting progression in comparison with the isolated use of SD-OCT. The choroid thickness, associated with the IOP fluctuations, plays an important role in the progression of PACG.


2021 ◽  
pp. 1-21
Author(s):  
Hui Zhang ◽  
Yi Li ◽  
Meng Hao ◽  
Xiaoyan Jiang ◽  
Jiucun Wang ◽  
...  

Abstract Background: Few studies have been conducted to investigate the association of kidney function decline with the trajectories of homocysteine (Hcy) over time, using repeated measurements. We aimed to investigate the association of kidney function with changes in plasma Hcy levels over time. Methods: Data were collected from the Rugao Longevity and Ageing Study. In detail, plasma Hcy and creatinine levels were measured in both waves (waves 2, 3 and 4) during the 3.5-year follow-up (N = 1135). Wave 2 was regarded as the baseline survey. The estimated glomerular filtration rate (eGFR) was calculated based on creatinine. Subjects were categorized into four groups according to quartiles of eGFR at baseline. Linear mixed-effect models were used to investigate the association of eGFR with subsequent plasma Hcy levels. Results: The mean eGFR at baseline was 90.84 (11.42) mL/min/1.73 m2. The mean plasma Hcy level was 14.09 (6.82) at baseline and increased to 16.28 (8.27) and 17.36 (10.39) μmol/L during follow-ups. In the crude model, the interaction between time and eGFR at baseline was significant (β = −0.02, 95% CI: −0.02 to −0.01, p = 0.002). After adjusting for confounding factors, a significant relationship remained (β = −0.02, 95% CI: −0.02 to −0.01, p = 0.003), suggesting that kidney function decline at baseline was associated with a faster increase in Hcy levels. Conclusion: Kidney function decline is associated with a more pronounced increase in plasma Hcy levels. Further studies with longer follow-up periods and larger sample sizes are needed to validate our findings.


2012 ◽  
Vol 4 (2) ◽  
pp. 236-241
Author(s):  
S Ganekal

Objective: To compare the macular ganglion cell complex (GCC) with peripapillary retinal fiber layer (RNFL) thickness map in glaucoma suspects and patients. Subjects and methods: Forty participants (20 glaucoma suspects and 20 glaucoma patients) were enrolled. Macular GCC and RNFL thickness maps were performed in both eyes of each participant in the same visit. The sensitivity and specificity of a color code less than 5% (red or yellow) for glaucoma diagnosis were calculated. Standard Automated Perimetry was performed with the Octopus 3.1.1 Dynamic 24-2 program. Statistics: The statistical analysis was performed with the SPSS 10.1 (SPSS Inc. Chicago, IL, EUA). Results were expressed as mean ± standard deviation and a p value of 0.05 or less was considered significant. Results: Provide absolute numbers of these findings with their units of measurement. There was a statistically significant difference in average RNFL thickness (p=0.004), superior RNFL thickness (p=0.006), inferior RNFL thickness (p=0.0005) and average GCC (p=0.03) between the suspects and glaucoma patients. There was no difference in optic disc area (p=0.35) and vertical cup/disc ratio (p=0.234) in both groups. While 38% eyes had an abnormal GCC and 13% had an abnormal RNFL thickness in the glaucoma suspect group, 98% had an abnormal GCC and 90% had an abnormal RNFL thickness in the glaucoma group.Conclusion: The ability to diagnose glaucoma with macular GCC thickness is comparable to that with peripapillary RNFL thickness. Macular GCC thickness measurements may be a good alternative or a complementary measurement to RNFL thickness assessment in the clinical evaluation of glaucoma.DOI: http://dx.doi.org/10.3126/nepjoph.v4i2.6538 Nepal J Ophthalmol 2012; 4 (2): 236-241 


Ophthalmology ◽  
2010 ◽  
Vol 117 (3) ◽  
pp. 462-470 ◽  
Author(s):  
Luciana M. Alencar ◽  
Linda M. Zangwill ◽  
Robert N. Weinreb ◽  
Christopher Bowd ◽  
Gianmarco Vizzeri ◽  
...  

2021 ◽  
pp. 26-31
Author(s):  
N.I. Kurysheva ◽  
◽  
A.D. Nikitina ◽  

Purpose. To study the role of optical coherence tomography (OCT) and OCT angiography (OCTA) in the detection of the primary glaucoma progression. Material and methods. The prospective study of 128 patients with primary glaucoma (128 eyes), conducted from 2015 to 2019, included at least 6 standard automated perimetry (SAP) and spectral-domain OCT (SD-OCT) examinations in each patient; OCTA was also used during the last year of observation. To determine the disease progression, the trend and event analysis using the Humphrey Field Analyzer was performed. The fact and rate of thinning of the retinal nerve fiber layer (RNFL) and its ganglion cell complex (GCC) were evaluated. If they had a trend of significant (p < 0.05) thinning, the eye was classified as having the SD-OCT progression. The values of corneal-compensated IOP were also considered: minimal (IOPmin) and peak (IOPmax). Results. Glaucoma progression was detected in 79 eyes. The isolated use of SAP allows detecting the progression only in 2.3% cases, SD-OCT - in 37.5%, among them the isolated assessment of GCC amounted to 7.8%, and RNFL – to 5.5%. The complex dynamic morphological and functional assessment increased the possibility of progression detection up to 61.7%. Progression was related to the stage of glaucoma damage at the moment of diagnosis: for the perimetry index PSD p=0.025, for the focal loss volume of GCC p=0.024, as well as with the level of minimal IOP (p=0.04). All patients with progression have shown the vessel density decrease in the peripapillary retina and parafovea. Conclusion. SD-OCT plays an important role in detecting the progression of glaucoma. The complex dynamic morphological and functional assessment allows detecting the progression in over half of patients. Progression is associated with the initial stage of glaucoma and an insufficient IOP decrease during treatment, accompanied by retinal microcirculation deterioration. Key words: primary, glaucoma progression, optical coherence tomography, OCT-angiography, IOP.


2013 ◽  
Vol 07 (01) ◽  
pp. 20 ◽  
Author(s):  
Luke J Saunders ◽  
Richard A Russell ◽  
David P Crabb ◽  
◽  
◽  
...  

Monitoring disease progression is at the centre of managing a patient with glaucoma. This article focuses specifically on how visual field measurements from standard automated perimetry (SAP) can be monitored over time. Various options for analysis on the Humphrey and Octopus perimeters are discussed, from summary indices to event and trend-based analyses; their respective merits and flaws evaluated. It is strongly recommended that quantitative analysis methods and software are used in assessing progression, as variability in threshold measurements makes detecting true deterioration non-trivial. Recommendations on the frequency of visual fields that should be taken per year are also discussed. The article concludes by putting the spotlight on new research being undertaken to improve the methods of measuring and predicting progression, as well as relating visual fields to patient visual disability and quality of life.


2020 ◽  
pp. 112067212097734
Author(s):  
Delaram Mirzania ◽  
Atalie C Thompson ◽  
Kelly W Muir

Glaucoma is the leading cause of irreversible blindness and disability worldwide. Nevertheless, the majority of patients do not know they have the disease and detection of glaucoma progression using standard technology remains a challenge in clinical practice. Artificial intelligence (AI) is an expanding field that offers the potential to improve diagnosis and screening for glaucoma with minimal reliance on human input. Deep learning (DL) algorithms have risen to the forefront of AI by providing nearly human-level performance, at times exceeding the performance of humans for detection of glaucoma on structural and functional tests. A succinct summary of present studies and challenges to be addressed in this field is needed. Following PRISMA guidelines, we conducted a systematic review of studies that applied DL methods for detection of glaucoma using color fundus photographs, optical coherence tomography (OCT), or standard automated perimetry (SAP). In this review article we describe recent advances in DL as applied to the diagnosis of glaucoma and glaucoma progression for application in screening and clinical settings, as well as the challenges that remain when applying this novel technique in glaucoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelvin K. W. Cheng ◽  
Beatrice L. Tan ◽  
Lyndsay Brown ◽  
Calum Gray ◽  
Eleonora Bianchi ◽  
...  

AbstractThe aim of this study was to investigate the relationship between glaucoma severity and perifoveal vessel density (pfVD), branching complexity, and foveal avascular zone (FAZ) size in normal tension glaucoma (NTG). 31 patients with NTG washed out of glaucoma medications were subjected to tests including; intraocular pressure measurement; standard automated perimetry; optical coherence tomography (OCT) measurement of macular ganglion cell complex (mGCC), inner macular thickness (IMT) and circumpapillary retinal nerve fibre layer (cpRNFL); and OCT angiography measurement of pfVD, FAZ perimeter and multispectral fractal dimensions (MSFD). Eyes with more severe glaucoma had significantly thinner mGCC and cpRNFL and lower pfVD. MD decreased by 0.4 dB (95% CI 0.1 to 0.6 dB, P = 0.007) for every 1% decrease in pfVD. Lower MSFD was observed in eyes with lower pfVD and in patients with systemic hypertension. Multivariable analysis, accounting for age and OCTA quality, found lower pfVD remained significantly associated with thinner IMT, thinner mGCC and worse MD but not with MSFD. pfVD was reduced in NTG and was diminished in eyes with worse MD. Macular vessel branching complexity was not related to severity of visual field loss but was lower in patients with systemic hypertension.


2005 ◽  
Vol 15 (2) ◽  
pp. 196-201 ◽  
Author(s):  
M. Zeppieri ◽  
P. Brusini ◽  
S. Miglior

Purpose To correlate functional damage over time detected by standard automated perimetry (SAP) and frequency doubling technology (FDT) with central corneal thickness (CCT) in patients with ocular hypertension (OHT). Methods Seventy-eight OHT patients underwent CCT measurements, SAP, and FDT (the latter two also after 12 and 18 months). Patients were divided into three equally sized groups of 26 patients each: thin (<540 üm), normal (540–580 üm), and thick cornea (>580 üm). The frequency of abnormal FDT and SAP results was analyzed over time (Pearson χ2 test). Results Six of 26 patients with thin corneas (23.1%) presented an abnormal FDT test at baseline, compared to 1 of 26 (3.8%) in the normal thickness cornea group and 1 of 26 (3.8%) in the thick cornea group. After 12 months, the abnormal FDT tests were as follows, respectively: 9 of 26 (34.6%), 2 of 26 (7.7%), and 2 of 26 (7.7%). For SAP the abnormal results were as follows, respectively: 8 (30.1%), 5 (19.2%), and 2 (7.7%). After 18 months, the abnormal FDT tests were as follows, respectively: 16 (61.5%), 5 (19.2%), and 5 (19.2%). For SAP, the abnormal results were as follows, respectively: 10 (38.5%), 5 (19.2%), and 2 (7.7%). Conclusions OHT patients with thinner corneas have a greater risk of developing functional damage over time.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroki Tanaka ◽  
Kyoko Ishida ◽  
Kenji Ozawa ◽  
Takuma Ishihara ◽  
Akira Sawada ◽  
...  

Abstract Background The nasal to temporal amplitudes ratio (N/T) of multifocal electroretinography (mfERG) scans measured within 5° of the macula can be used to detect glaucomatous change. The photopic negative response (PhNR) of mfERG elicited by a circular stimulus centered on the fovea was significantly reduced in eyes with glaucoma. The PhNR to B-wave ratio (PhNR/B) is the optimal measure of the PhNR. However, clinical superiority for evaluating glaucoma patients has not been determined between N/T and PhNR/B yet. Methods For morphological assessments, ganglion cell complex (GCC) in six regions and the average were measured by optical coherence tomography (OCT). For functional assessment, Humphrey visual fields (VF) with mean sensitivities (MT) and mfERG scans with parameters of N/T and the multifocal photopic negative response to B-wave ratio (mfPhNR/B) were measured. Sixty-nine eyes of 44 glaucoma patients were included and correlations between mfERG parameters and OCT or VF parameters were evaluated. Results The mean age of patients was 59.4 years. The mean deviation for all eyes obtained with the VF 30–2 and VF 10–2 was − 7.00 and − 6.31 dB, respectively. Significant correlations between GCC thickness or VF parameter and the N/T were found, especially in the inferior and inforotemporal retinal areas corresponding to superior and superonasal VF sectors (GCC vs N/T; coefficient = − 7.916 and − 7.857, and MT vs N/T; coefficient = − 4.302 and − 4.437, in the inferior and inforotemporal retinal areas, respectively, all p values < 0.05). However, similar associations were not obtained between mfPhNR/B and OCT or VF parameters. The mfPhNR/B only in the inferotemporal sector was significantly correlated with the average thickness of GCC (coefficient = 4.823, P = 0.012). Conclusions The N/T was correlated with GCC and VF in more numbers of measurement areas than the mfPhNR/B in the current study, however, a future study modifying the stimuli and amplitudes to obtain the spatial correspondence to OCT and VF measurement will be required to evaluate the value of mfERG.


Sign in / Sign up

Export Citation Format

Share Document