Movement patterns, home range size and habitat utilization of the bluespine unicornfish, Naso unicornis (Acanthuridae) in a Hawaiian marine reserve

2005 ◽  
Vol 73 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Carl G. Meyer ◽  
Kim N. Holland
2009 ◽  
Vol 36 (5) ◽  
pp. 422 ◽  
Author(s):  
K. E. Moseby ◽  
J. Stott ◽  
H. Crisp

Control of introduced predators is critical to both protection and successful reintroduction of threatened prey species. Efficiency of control is improved if it takes into account habitat use, home range and the activity patterns of the predator. These characteristics were studied in feral cats (Felis catus) and red foxes (Vulpes vulpes) in arid South Australia, and results are used to suggest improvements in control methods. In addition, mortality and movement patterns of cats before and after a poison-baiting event were compared. Thirteen cats and four foxes were successfully fitted with GPS data-logger radio-collars and tracked 4-hourly for several months. High intra-specific variation in cat home-range size was recorded, with 95% minimum convex polygon (MCP) home ranges varying from 0.5 km2 to 132 km2. Cat home-range size was not significantly different from that of foxes, nor was there a significant difference related to sex or age. Cats preferred habitat types that support thicker vegetation cover, including creeklines and sand dunes, whereas foxes preferred sand dunes. Cats used temporary focal points (areas used intensively over short time periods and then vacated) for periods of up to 2 weeks and continually moved throughout their home range. Aerial baiting at a density of 10 baits per km2 was ineffective for cats because similar high mortality rates were recorded for cats in both baited and unbaited areas. Mortality was highest in young male cats. Long-range movements of up to 45 km in 2 days were recorded in male feral cats and movement into the baited zone occurred within 2 days of baiting. Movement patterns of radio-collared animals and inferred bait detection distances were used to suggest optimum baiting densities of ~30 baits per km2 for feral cats and 5 per km2 for foxes. Feral cats exhibited much higher intra-specific variation in activity patterns and home-range size than did foxes, rendering them a potentially difficult species to control by a single method. Control of cats and foxes in arid Australia should target habitats with thick vegetation cover and aerial baiting should ideally occur over areas of several thousand square kilometres because of large home ranges and long-range movements increasing the chance of fast reinvasion. The use of temporary focal points suggested that it may take several days or even weeks for a cat to encounter a fixed trap site within their home range, whereas foxes should encounter them more quickly as they move further each day although they have a similar home-range size. Because of high intra-specific variability in activity patterns and home-range size, control of feral cats in inland Australia may be best achieved through a combination of control techniques.


Koedoe ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
Francois Roux ◽  
Gert Steyn ◽  
Clinton Hay ◽  
Ina Wagenaar

Historical data suggested that the tigerfish (Hydrocynus vittatus) of the Incomati River migrates upstream and downstream as part of their life history. It has been suggested that this movement was a prerequisite for successful spawning in inundated floodplains in Mozambique. Recent advances in aquatic radio telemetry provided a reliable mechanism to monitor fish movement and increase knowledge of the ecology of tigerfish. From 04 January 2003 to 22 December 2003, 41 tigerfish in the Incomati River system were fitted with radio transmitters to record movement patterns and estimate home range size. On average, each fish was tracked 72 times, and the total number of fixes was 2971 over the study period, including 1322 summer fixes and 1649 winter fixes. The mean longest distance travelled by tigerfish was 730 m (range = 75 m to 3200 m). The home range size varied between individual fish, but on average fish stayed within a defined home range of 48 846 m2. Tigerfish showed high site fidelity to specific habitats within specific activity zones and movement occurred primarily within these defined zones. Differences in movement pattern, longest distance travelled and home range size could not be attributed to the sex or size of the fish. No large-scale movement patterns associated with specific life history activity were observed; thus, previous reports of large-scale downstream migrations and spawning migrations appear to be invalid. The presence of weirs in the study area impedes free fish movement as these weirs create migration obstructions.Conservation implications: River regulation such as damming, water abstraction, obstructive barriers and channel modification may have a detrimental impact on the survival strategy of this species. Implementation of these results in a management policy will provide a reliable basis for species specific requirements such as upstream reservoir release management; minimum flow volumes required for downstream ecosystem maintenance and management and planning of structures obstructing natural flow.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180826 ◽  
Author(s):  
Mohammad A. Abu Baker ◽  
Nigel Reeve ◽  
April A. T. Conkey ◽  
David W. Macdonald ◽  
Nobuyuki Yamaguchi

1995 ◽  
Vol 43 (1) ◽  
pp. 91 ◽  
Author(s):  
JL Gardner ◽  
M Serena

Home-range size and overlap and movement patterns of adult male platypus, Ornithorhynchus anatinus, occupying streams in southern Victoria were investigated near the start of the breeding season using radio-tracking techniques. On the basis of a sample of males monitored for four or more complete activity periods, home-range size varied from 2.9 to 7.0 km, with individuals (n = 4) moving a mean net distance of 2.0 +/- 1.4 km per activity period. Longer-range movements were also observed, with one male travelling at least 15 km from one stream catchment to another via an intervening stretch of river. Some home ranges of males were mutually exclusive whereas others overlapped substantially; in the latter case, males largely avoided each other, spending most of their time in different parts of the shared area. All home ranges of males apparently overlapped those of two or more adult females. Three patterns of travel over complete activity periods were recognised, including unidirectional travel (point A to B), return travel (A to B to A) and multidirectional travel with multiple, relatively short-range backtracking. Males occupying overlapping areas often moved multidirectionally and rarely undertook unidirectional travel, whereas the converse applied to males occupying exclusive areas.


Ostrich ◽  
2018 ◽  
Vol 90 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Richard P Reading ◽  
James Bradley ◽  
Peter Hancock ◽  
Rebecca Garbett ◽  
Moses Selebatso ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167254 ◽  
Author(s):  
Juliana Rechetelo ◽  
Anthony Grice ◽  
April Elizabeth Reside ◽  
Britta Denise Hardesty ◽  
James Moloney

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0253345
Author(s):  
Aline Giroux ◽  
Zaida Ortega ◽  
Luiz Gustavo Rodrigues Oliveira-Santos ◽  
Nina Attias ◽  
Alessandra Bertassoni ◽  
...  

Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters’ movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0203449 ◽  
Author(s):  
Inês Silva ◽  
Matthew Crane ◽  
Pongthep Suwanwaree ◽  
Colin Strine ◽  
Matt Goode

Sign in / Sign up

Export Citation Format

Share Document