In-situ electrochemical measurements of total concentration and speciation of heavy metals in acid mine drainage (AMD): assessment of the use of anodic stripping voltammetry

2006 ◽  
Vol 28 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Hun-Bok Jung ◽  
Seong-Taek Yun ◽  
Soon-Oh Kim ◽  
Myung Chae Jung ◽  
Chil-Sup So ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4249 ◽  
Author(s):  
Karina Torres-Rivero ◽  
Lourdes Torralba-Cadena ◽  
Alexandra Espriu-Gascon ◽  
Ignasi Casas ◽  
Julio Bastos-Arrieta ◽  
...  

Screen-printed carbon nanofiber electrodes (SPCNFEs) represent an alternative with great acceptance due to their results, as well as their low impact on the environment. In order to improve their performance, in the present work they were modified with silver nanoparticles (Ag-NPs) and electrochemically characterized by using anodic stripping voltammetry. From the Ag-NP synthesis, silver seeds (Ag-NS) and silver nanoprisms (Ag-NPr) were obtained. The Ag-NP formation was confirmed by micrographs, where Ag-NPs with diameters of 12.20 ± 0.04 nm for Ag-NS and 20.40 ± 0.09 nm for Ag-NPr were observed. The electrodes were modified by using three different deposition methods—drop-casting, spin-coating, and in situ approaches—that offer different nanoparticle distribution and electrode modification times. It was observed that the last methodology showed a low amount of Ag-NS deposited on the electrode surface and deep alteration of this surface. Those facts suggest that the in situ synthesis methodology was not appropriate for the determination of heavy metals, and it was discarded. The incorporation of the nanoparticles by spin-coating and drop-casting strategies showed different spatial distribution on the electrode surface, as proved by scanning electron microscopy. The electrodes modified by these strategies were evaluated for the cadmium(II) and lead(II) detection using differential pulse anodic stripping voltammetry, obtaining detection limit values of 2.1 and 2.8 µg·L−1, respectively. The overall results showed that the incorporation route does not directly change the electrocatalytic effect of the nanoparticles, but the shape of these nanoparticles (spherical for seeds and triangular for prisms) has preferential electrocatalytic enhancement over Cd(II) or Pb(II).


2015 ◽  
Vol 49 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Hitoshi Kodamatani ◽  
Yuriko Kono ◽  
Akinori Takeuchi ◽  
Ken Takai ◽  
...  

2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2019 ◽  
Vol 538 ◽  
pp. 132-141 ◽  
Author(s):  
Guorui Feng ◽  
Jianchao Ma ◽  
Xiaopeng Zhang ◽  
Qingfang Zhang ◽  
Yuqiang Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document