Occurrence and particle-size distributions of polycyclic aromatic hydrocarbons in the ambient air of coking plant

2013 ◽  
Vol 36 (3) ◽  
pp. 531-542 ◽  
Author(s):  
Xiaofeng Liu ◽  
Lin Peng ◽  
Huiling Bai ◽  
Ling Mu ◽  
Chongfang Song
2012 ◽  
Vol 12 (18) ◽  
pp. 8877-8887 ◽  
Author(s):  
J. Ringuet ◽  
E. Leoz-Garziandia ◽  
H. Budzinski ◽  
E. Villenave ◽  
A. Albinet

Abstract. The size distribution of particulate nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) was determined during two field campaigns at a traffic site in summer 2010 and at a suburban site during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment in summer 2009. Both, OPAHs and NPAHs were strongly associated (>85%) to fine particles (Dp< 2.5 μm) increasing the interest of their study on a sanitary point of view. Results showed really different NPAH and OPAH particle size distributions between both sites. At traffic site, clearly bimodal (notably for NPAHs) particle size distributions (Dp = 0.14 and 1.4 μm) were observed, while the particle size distributions were more scattered at the suburban site, especially for OPAHs. Bimodal particle size distribution observed at traffic site for the NPAH could be assigned to the vehicle emissions and the particle resuspension. Broadest distribution observed at the suburban site could be attributed to the mass transfer of compounds by volatilization/sorption processes during the transport of particles in the atmosphere. Results also showed that the combination of the study of particle size distributions applied to marker compounds (primary: 1-nitropyrene; secondary: 2-nitrofluoranthene) and to NPAH or OPAH chemical profiles bring some indications on their primary and/or secondary origin. Indeed, 1,4-anthraquinone seemed only primary emitted by vehicles while 7-nitrobenz[a]anthracene, benz[a]antracen7,12-dione and benzo[b]fluorenone seemed secondarily formed in the atmosphere.


2012 ◽  
Vol 12 (6) ◽  
pp. 14169-14196 ◽  
Author(s):  
J. Ringuet ◽  
E. Leoz-Garziandia ◽  
H. Budzinski ◽  
E. Villenave ◽  
A. Albinet

Abstract. The size distribution of particulate nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) was determined during two field campaigns at a traffic site in summer 2010 and at a suburban site during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment in summer 2009. Both, OPAHs and NPAHs were strongly associated (>85%) to fines particles (Dp < 2.5 μm) increasing the interest of their study on a sanitary point of view. Results showed really different NPAH and OPAH particle size distributions between both sites. At traffic site, clearly bimodal (notably for NPAHs) particle size distributions (Dp = 0.14 and 1.4 μm) were observed, while the particle size distributions were more scattered at the suburban site, especially for OPAHs. Bimodal particle size distribution observed at traffic site for the NPAH could be assigned to the vehicle emissions and the particle resuspension. Broadest distribution observed at the suburban site could be attributed to the mass transfer of compounds by volatilization/sorption processes during the transport of particles in the atmosphere. Results also showed that the combination of the study of particle size distributions applied to marker compounds (primary: 1-nitropyrene; secondary: 2-nitrofluoranthene) and to NPAH or OPAH chemical profiles bring some indications on their primary and/or secondary origin. Indeed, 1,4-anthraquinone seemed only primary emitted by vehicles while 7-nitrobenz[a]anthracene, benz[a]antracen7,12-dione and benzo[b]fluorenone seemed secondarily formed in the atmosphere.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3646 ◽  
Author(s):  
Sun ◽  
Chen ◽  
Ding ◽  
Liu ◽  
Zhang

Download ash and emission dust samples were collected from sintering, coking, ironmaking and steelmaking processes of iron and steel enterprises in Laiwu. Sixteen kinds of polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority controlled lists were quantitatively analyzed using Gas Chromatography-Mass Spectrometer (GC-MS). Laser particle size analyzer was used to obtain the distribution pattern of download ash. It was found that the diameter distribution pattern from four production processes was quite different. The proportion of fine particulate (0–2.5 μm) was the highest (72.62%) in the steelmaking refining process, and was 28.962% in the ironmaking process. Moreover, the particle size in download ash from steelmaking refining is all less than 10 μm and that from the ironmaking process was 52.92%. The medium-sized particles (10–100 μm) were dominant in sinter and coking download ashes. The total PAHs (∑16PAHs) mass concentration ranged from 0.49 ± 0.06 to 69.63 ± 5.57 μg·g−1 in download ash samples, and varied from 2.815 ± 0.253 to 19.429 ± 2.545 μg·m−3 in emission dust samples. The ∑16PAHs values were both largest in download ash and dust emission from the coking process (69.63 ± 5.57 μg·g−1 and 19.429 ± 2.545 μg·m−3, respectively). The most abundant individual PAHs were benzo[b]fluoranthene, benzo[k]fluoranthene, phenanthrene, benzo[a]anthracene in ash samples, and benzo[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene and indeno[1,2,3-cd]pyrene in emission dust samples. Dominant compounds were high-molecular weight (four- to six-ring) PAHs in both ash and dust samples. The concentration order of individual compounds in PM10 and PM2.5 in ambient air around the steel plant was completely consistent with each other, and the concentration of ∑16PAHs was the highest in the steel plant and lowest in Daqin village because of upwind of the steel plant. The concentrations of benzo[b]fluoranthene and fluoranthene in ambient air were comparatively high, and were in accordance with the higher concentration of the two monomers in the download ash samples, which suggested that the effect of the emission flue gas from the steel plant on ambient air was necessary to concern.


Sign in / Sign up

Export Citation Format

Share Document