Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction

2018 ◽  
Vol 41 (1) ◽  
pp. 461-467 ◽  
Author(s):  
Myoung-Soo Ko ◽  
Seunghak Lee ◽  
Kyoung-Woong Kim
Clay Minerals ◽  
1987 ◽  
Vol 22 (3) ◽  
pp. 329-337 ◽  
Author(s):  
J. Torrent ◽  
U. Schwertmann ◽  
V. Barron

AbstractThe reductive dissolution by Na-dithionite of 28 synthetic goethites and 26 hematites having widely different crystal morphologies, specific surfaces and aluminium substitution levels has been investigated. For both minerals the initial dissolution rate per unit of surface area decreased with aluminium substitution. At similar aluminium substitution and specific surface, goethites and hematites showed similar dissolution rates. These results suggest that preferential, reductive dissolution of hematite in some natural environments, such as soils or sediments, might be due to the generally lower aluminium substitution of this mineral compared to goethite.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Toshitsugu Yamazaki

Abstract Reductive dissolution of magnetite is known to occur below the Fe-redox boundary in sediments. In this study, detailed processes associated with biogenic magnetite dissolution are documented. A sediment core from the Japan Sea was used for this purpose, in which reductive dissolution of magnetic minerals is known to start at depths of about 1.15 m and is mostly complete within a depth interval of about 0.35 m. Using first-order reversal curve diagrams, preferential dissolution of biogenic magnetite within this interval is estimated from the observation that a narrow peak that extends along the coercivity axis (central ridge), which is indicative of biogenic magnetite, diminishes downcore. Transmission electron microscopy is used to demonstrate that the sediments contain three magnetofossil morpho-types: octahedra, hexagonal prisms, and bullet-shaped forms. Within the reductive dissolution zone, partially etched crystals are commonly observed. With progressive dissolution, the proportion of bullet-shaped magnetofossils decreases, whereas hexagonal prisms become more dominant. This observation can be explained by the differences in resistance to dissolution among crystal planes of magnetite and the differences in surface area to volume ratios. Magnetofossil morphology may reflect the preference of magnetotactic bacterial lineages for inhabiting specific chemical environments in sediments. However, it could also reflect alteration of the original morphological compositions during reductive diagenesis, which should be considered when using magnetofossil morphology as a paleoenvironmental proxy.


2000 ◽  
Vol 620 ◽  
Author(s):  
R. Lee Penn ◽  
Alan T. Stone ◽  
David R. Veblen

ABSTRACTHigh-Resolution Transmission Electron Microscopy (HRTEM) results show a strong crystal-chemical and defect dependence on the mode of dissolution of synthetic heterogenite (CoOOH) particles. As-synthesized heterogenite particles are micron-size plates (aspect ratio ∼ 1/30) constructed of crystallographically oriented ∼ 3-nm primary particles or are single ∼ 21-nm unattached heterogenite platelets (aspect ratio ∼1/7). Reductive dissolution, using hydroquinone, was examined in order to evaluate morphology evolution as a function of reductant concentration. Two end-member modes of dissolution were observed: 1) non-specific dissolution of macroparticles and 2) preferential dissolution along misoriented boundaries. In the case of non-specific dissolution, average macrocrystal size and morphology are not altered as building block crystals are consumed. The result is web-like particles with similar breadth and shape as undissolved particles. Preferential dissolution involves the formation of channels or holes along boundaries of angular misorientation. Such boundaries involve only a few degrees of tilt, but dissolution occurs almost exclusively at such sites. Energy-Filtered TEM thickness maps show that the thickness of surrounding material is not significantly different from that of undissolved particles. Finally, natural heterogenite from Goodsprings, Nevada, shows morphology and microstructure similar to those of this synthetic heterogenite.


2021 ◽  
pp. 1-13
Author(s):  
Zhongqing Huang ◽  
Changliang Yang ◽  
Mengping Song ◽  
Jing Zhang ◽  
Shaoyu Zeng ◽  
...  

2015 ◽  
Vol 40 (39) ◽  
pp. 13272-13280 ◽  
Author(s):  
Florent Lemont ◽  
Alisée Barbier ◽  
Samuel Resin

1995 ◽  
Vol 60 (6) ◽  
pp. 950-959 ◽  
Author(s):  
Tomáš Grygar ◽  
Jan Šubrt ◽  
Jaroslav Boháček

Abrasive stripping voltammetry was applied to the investigation of the reductive dissolution of some iron(III) oxides and hydroxy-oxides, particularly goethite (α-FeOOH), in acid media. The electrode reaction directly involves the solid phase, and the reaction pathway depends on the phase composition and particle shape. This can be used for a qualitative and quantitative characterization of goethite. The results of a quantitative analysis of a mixture of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH) are compared with those of IR and Moessbauer spectroscopic examination. The effects of the particle appearance (shape, crystal intergrowth) on the results of the voltammetric and chronoamperometric measurements are discussed.


2019 ◽  
Vol 520 ◽  
pp. 11-20 ◽  
Author(s):  
Jian Zhang ◽  
Yuxin Li ◽  
Wei Li ◽  
Lixiang Zhou ◽  
Yeqing Lan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document