redox boundary
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 73 (3) ◽  
pp. A160321
Author(s):  
José Perelló

The sediment-hosted stratiform copper–silver mineralization in the San Marcos area of Coahuila, northeastern Mexico occurs predominantly at an Early Cretaceous redox boundary between footwall siliciclastic red beds of the San Marcos Formation and hanging-wall carbonate strata of the Cupido Formation in the Sabinas basin. The hypogene mineralization is mainly present as chalcocite-group minerals, with additional bornite and chalcopyrite, and everywhere occurs in both disseminated and vein/veinlet forms. Supergene copper-bearing oxides (malachite, chalcanthite, azurite, chrysocolla) are, however, the dominant surface expression of the mineralization. Additional sediment-hosted stratiform copper–silver mineralization also occurs, albeit erratically, in lower strata of the Sabinas basin as well as in veins in basement granitoids, thus spanning ~3000 m of basin stratigraphy. Where best developed, the stratiform mineralization displays intense structural control proximal to the regional San Marcos fault system. This major bounding fault, regional in nature and with numerous periods of activity, controlled the evolution of the Sabinas basin. Structural controls on mineralization include stacked, shallow-angle, bedding-parallel, northeast-vergent thrust faults and associated drag folds, in addition to numerous, steeply-dipping, northeast-trending copper-bearing veins and veinlets. The mineralized veins and veinlets, and the bedding-parallel thrusts display mutually crosscutting relationships. These elements are all consistent and in harmony with a regional northeast-trending direction of horizontal shortening accompanying reverse motion of the San Marcos fault system. Inversion along the San Marcos fault system, and the entire Sabinas basin in the Paleogene from ~60 to 40 Ma, resulted from wholesale contractional deformation during the Laramide (Mexican) orogeny. Hence, emplacement of the sediment-hosted stratiform copper–silver mineralization at San Marcos, and elsewhere in the larger Coahuila region, is interpreted as a natural corollary of large-scale, metal-bearing fluid expulsion, migration, and precipitation resulting from orogenic shortening, lithostatic loading, and squeezing of the Sabinas basin during Mexican orogen construction. Although sedimentation of the host strata in the Sabinas basin took place in a pericratonic setting associated with the opening of the Gulf of Mexico, sediment-hosted stratiform copper-silver mineralization occurred during orogenic uplift and conversion of the original basin into an orogen-foreland pair, with similarities to some of the world´s largest sediment-hosted stratiform copper provinces.


2021 ◽  
Vol 9 ◽  
Author(s):  
Adrian Felix Höfken ◽  
Tilo von Dobeneck ◽  
Thomas Kuhn ◽  
Sabine Kasten

Recent measurements of pore-water oxygen profiles in ridge flank sediments of the East Pacific Rise revealed an upward-directed diffusive oxygen flux from the hydrothermally active crust into the overlying sediment. This double-sided oxygenation from above and below results in a dual redox transition from an oxic sedimentary environment near the seabed through suboxic conditions at sediment mid-depth back to oxic conditions in the deeper basal sediment. The potential impact of this redox reversal on the paleo- and rock magnetic record was analyzed for three sediment cores from the Clarion-Clipperton-Zone (low-latitude eastern North Pacific). We found that the upward-directed crustal oxygen flux does not impede high quality reversal-based and relative paleointensity-refined magnetostratigraphic dating. Despite low and variable sedimentation rates of 0.1–0.8 cm/kyr, robust magnetostratigraphic core chronologies comprising the past 3.4 resp. 5.2 million years could be established. These age-models support previous findings of significant local sedimentation rate variations that are probably related to the bottom current interactions with the topographic roughness of the young ridge flanks. However, we observed some obvious paleomagnetic irregularities localized at the lower oxic/suboxic redox boundaries of the investigated sediments. When analyzing these apparently remagnetized sections in detail, we found no evidence of physical disturbance or chemical alteration. A sharp increase in single-domain magnetite concentration just below the present lower oxic/suboxic redox boundary suggests secondary magnetite biomineralization by microaerophilic magnetotactic bacteria living as a separate community in the lower, upward oxygenated part of the sediment column. We therefore postulate a two-phased post-depositional remanent magnetization of ridge flank sediments, first by a shallow and later by a deep-living community of magnetotactic bacteria. These findings are the first evidence of a second, deep population of probably inversely oriented magnetotactic bacteria residing in the inverse oxygen gradient zone of ridge flank sediments.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Toshitsugu Yamazaki

Abstract Reductive dissolution of magnetite is known to occur below the Fe-redox boundary in sediments. In this study, detailed processes associated with biogenic magnetite dissolution are documented. A sediment core from the Japan Sea was used for this purpose, in which reductive dissolution of magnetic minerals is known to start at depths of about 1.15 m and is mostly complete within a depth interval of about 0.35 m. Using first-order reversal curve diagrams, preferential dissolution of biogenic magnetite within this interval is estimated from the observation that a narrow peak that extends along the coercivity axis (central ridge), which is indicative of biogenic magnetite, diminishes downcore. Transmission electron microscopy is used to demonstrate that the sediments contain three magnetofossil morpho-types: octahedra, hexagonal prisms, and bullet-shaped forms. Within the reductive dissolution zone, partially etched crystals are commonly observed. With progressive dissolution, the proportion of bullet-shaped magnetofossils decreases, whereas hexagonal prisms become more dominant. This observation can be explained by the differences in resistance to dissolution among crystal planes of magnetite and the differences in surface area to volume ratios. Magnetofossil morphology may reflect the preference of magnetotactic bacterial lineages for inhabiting specific chemical environments in sediments. However, it could also reflect alteration of the original morphological compositions during reductive diagenesis, which should be considered when using magnetofossil morphology as a paleoenvironmental proxy.


2020 ◽  
Author(s):  
Toshitsugu Yamazaki

Abstract Reductive dissolution of magnetite is known to occur below the Fe-redox boundary in sediments. In this study detailed processes associated with biogenic magnetite dissolution are documented. A sediment core from the Japan Sea was used for this purpose, in which reductive dissolution of magnetic minerals is known to start at depths of about 1.15 m and is mostly complete within a depth interval of about 0.35 m. Using first-order reversal curve diagrams, preferential dissolution of biogenic magnetite within this interval is estimated from the observation that a narrow peak that extends along the coercivity axis (central ridge), which is indicative of biogenic magnetite, diminishes downcore. Transmission electron microscopy is used to demonstrate that the sediments contain three magnetofossil morpho-types: octahedra, hexagonal prisms, and bullet-shaped forms. Within the reductive dissolution zone, partially etched crystals are commonly observed. With progressive dissolution, the proportion of bullet-shaped magnetofossils decreases, whereas hexagonal prisms become more dominant. This observation can be explained by the differences in resistance to dissolution among crystal planes of magnetite and the differences in surface area to volume ratios. Magnetofossil morphology may reflect the preference of magnetotactic bacterial lineages for inhabiting specific chemical environments in sediments. However, it could also reflect alteration of the original morphological compositions during reductive diagenesis, which should be considered when using magnetofossil morphology as a paleoenvironmental proxy.


2020 ◽  
Author(s):  
Toshitsugu Yamazaki

Abstract Reductive dissolution of magnetite is known to occur below the Fe-redox boundary in sediments. In this study detailed processes associated with biogenic magnetite dissolution are documented. A sediment core from the Japan Sea was used for this purpose, in which reductive dissolution of magnetic minerals is known to start at depths of about 1.15 m and is mostly complete within a depth interval of about 0.35 m. Using first-order reversal curve diagrams, preferential dissolution of biogenic magnetite within this interval is estimated from the observation that a narrow peak that extends along the coercivity axis (central ridge), which is indicative of biogenic magnetite, diminishes downcore. Transmission electron microscopy is used to demonstrate that the sediments contain three magnetofossil morpho-types: octahedra, hexagonal prisms, and bullet-shaped forms. Within the reductive dissolution zone, partially etched crystals are commonly observed. With progressive dissolution, the proportion of bullet-shaped magnetofossils decreases, whereas hexagonal prisms become more dominant. This observation can be explained by the differences in resistance to dissolution among crystal planes of magnetite and the differences in surface area to volume ratios. Magnetofossil morphology may reflect the preference of magnetotactic bacterial lineages for inhabiting specific chemical environments in sediments. However, it could also reflect alteration of the original morphological compositions during reductive diagenesis, which should be considered when using magnetofossil morphology as a paleoenvironmental proxy.


Author(s):  
Mark A. Stevenson ◽  
Johan C. Faust ◽  
Luiza L. Andrade ◽  
Felipe S. Freitas ◽  
Neil D. Gray ◽  
...  

Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment–water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic–pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0–4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5–10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5–33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters ( n -alkanes, n -alkanoic acids, n -alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.


2020 ◽  
Author(s):  
Toshitsugu Yamazaki

Abstract Reductive dissolution of magnetites is known to occur below the Fe-redox boundary in sediment columns. This study aims to document the detailed processes of biogenic magnetite dissolution. A sediment core taken from the Japan Sea was used for this purpose, in which reductive dissolution of magnetic minerals are known to start at about 1.3 m in depth and mostly complete within an interval of about 0.3 m. Using first-order reversal curve diagrams, preferential dissolution of biogenic magnetites within this interval is estimated from the observation that a narrow peak extending along the coercivity axis (the central ridge), which is indicative of biogenic magnetite, diminishes downcore. Transmission electron microscopy shows that the sediments contain the three morpho-types of magnetofossils: octahedron, hexagonal prism, and bullet shaped. With the progress of reductive dissolution, the proportion of bullet-shaped magnetofossils decreases, whereas that of hexagonal prisms increases. For hexagonal prisms, {111} caps are often etched while {110} side faces are almost intact. These observations can be explained by the differences in resistivity against dissolution among crystal planes of magnetite. A previous study reported that the dissolution rate of (111) planes is higher than that of (110) planes. Hexagonal prisms elongate in the [111] direction and are wrapped with {110} side faces, whereas octahedral and bullet-shaped magnetofossils have larger proportions of surface areas with {111} faces. Magnetosome morphology may reflect preference of inhabiting magnetotactic bacterial lineage for chemical conditions in sediments. One should, however, be cautious for possible alteration of original morphological composition during reductive diagenesis when magnetofossil morphology is used as a paleoenvironmental proxy.


2020 ◽  
Vol 84 (4) ◽  
pp. 554-562
Author(s):  
Victoria S Coker ◽  
Gerrit van der Laan ◽  
Neil D Telling ◽  
Jonathan R Lloyd ◽  
James M Byrne ◽  
...  

AbstractBiogenic nanoscale vanadium magnetite is produced by converting V(V)-bearing ferrihydrites through reductive transformation using the metal-reducing bacterium Geobacter sulfurreducens. With increasing vanadium in the ferrihydrite, the amount of V-doped magnetite produced decreased due to V-toxicity which interrupted the reduction pathway ferrihydrite–magnetite, resulting in siderite or goethite formation. Fe L2,3 and V L2,3 X-ray absorption spectra and data from X-ray magnetic circular dichroism analysis revealed the magnetite to contain the V in the Fe(III) Oh site, predominately as V(III) but always with a component of V(VI), present a consistent V(IV)/V(III) ratio in the range 0.28 to 0.33. The bacteriogenic production of V-doped magnetite nanoparticles from V-doped ferrihydrite is confirmed and the work reveals that microbial reduction of contaminant V(V) to V(III)/V(IV) in the environment will occur below the Fe-redox boundary where it will be immobilised in biomagnetite nanoparticles.


2019 ◽  
Vol 11 (33) ◽  
pp. 29549-29556 ◽  
Author(s):  
Hao Kong ◽  
Wei-wen Liu ◽  
Wei Zhang ◽  
Qiang Zhang ◽  
Cun-huai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document