Efficacy of Streptomyces philanthi RL-1-178 culture filtrate against growth and aflatoxin B1 production by two aflatoxigenic fungi on maize seeds

2020 ◽  
Vol 156 (4) ◽  
pp. 1041-1051 ◽  
Author(s):  
Sawai Boukaew ◽  
Wanida Petlamul ◽  
Poonsuk Prasertsan
Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 198
Author(s):  
Rahim Khan ◽  
Farinazleen Mohamad Ghazali ◽  
Nor Ainy Mahyudin ◽  
Nik Iskandar Putra Samsudin

The pre-harvest biocontrol approach currently used includes laboratory inoculations using non-aflatoxigenic strains of Aspergillus flavus. This strategy effectively suppresses the indigenous aflatoxigenic strains and reduces aflatoxin accumulation in sweetcorn. The current in vitro study’s main objective is to determine the diametric growth rates of both Aflatoxin (AF)+ and AF− strains and improve the understanding of competitive relationships among these strains in sweetcorn (Zea mays). Sweetcorn kernels inoculated with AF+ strains only, AF− strains only, and co-inoculated with AF+ + AF− strains were investigated for aflatoxin concentrations. The diametric growth results revealed that growth rates of AF− strains at 25 and 30 °C were much greater than AF+ strains, which was in line with previous studies. The in vitro findings showed that the AKR5− and AKL34− biocontrol strains effectively inhibited the colony propagation and subsequent AFB1 contamination (up to 79%) of AF+ strains. On the other hand, the AKR1− and AKL35− were least effective in reducing AFB1 contents only by 58% and 60%, respectively. There was a significant difference (p < 0.05) in the reduction of AFB1 contents achieved by AF− strains of A. flavus. The findings of the present study indicated the reduction in AFB1 with population expressions of AF+ strains by the AF− strains and supports the notion of competitive exclusion through vigorous development and propagation of the non-aflatoxigenic fungi.


Food Control ◽  
2015 ◽  
Vol 54 ◽  
pp. 79-85 ◽  
Author(s):  
Ksenija Markov ◽  
Branka Mihaljević ◽  
Ana-Marija Domijan ◽  
Jelka Pleadin ◽  
Frane Delaš ◽  
...  

Author(s):  
A. K. Veligodska ◽  
O. V. Fedotov ◽  
A. S. Petreeva

<p>The influence of certain nitrogen compounds - components of glucose-peptone medium (GPM) on the accumulation of carotenoids by some strains was investigated by surface cultivating basidiomycetes. The total carotenoid content was set in acetone extracts of mycological material spectrophotometrically and calculated using the Vetshteyn formula.</p> <p>As the nitrogen-containing components used GPM with 9 compounds, such as peptone, DL-valine, L-asparagine, DL-serine, DL-tyrosine, L-proline, L-alanine, urea, NaNO<sub>3</sub>. The effect on the accumulation of specific compounds both in the mycelium and in the culture fluid of carotenoids by culturing certain strains of Basidiomycetes was identified.</p> <p>Adding to standard glucose-peptone medium peptone at 5 g/l causes an increase of carotenoid accumulation by strain <em>L. sulphureus</em> Ls-08, and in a concentration of 4 g/l by strains of <em>F. hepatica </em>Fh-18 and <em>F. fomentarius</em> Ff-1201.</p> <p>In order to increase the accumulation of carotenoids in the mycelium  we suggested to make a standard glucose-peptone medium with proline or valine for cultivating of <em>L. sulphureus</em> Ls- 08 strain; alanine for <em>F. fomentarius</em> Ff-1201 strain; proline, asparagine and serine - for strain Fh-18 of <em>F. hepatica</em>. The results can be implemented in further optimization of the composition of the nutrient medium for culturing strains of Basidiomycetes wich producing carotenoids.</p> <p><em>Keywords: nitrogen-containing substances, Basidiomycetes, mycelium</em><em>,</em><em> culture filtrate, carotenoids</em></p>


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

Sign in / Sign up

Export Citation Format

Share Document