Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm

Author(s):  
Yali Cao ◽  
Yue Shao ◽  
Hongxia Zhang
2021 ◽  
Author(s):  
Thomas Bury ◽  
Raman Sujith ◽  
Induja Pavithran ◽  
Marten Scheffer ◽  
Timothy Lenton ◽  
...  

Many natural systems exhibit regime shifts where slowly changing environmental conditions suddenly shift the system to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems all simplify down to a small number of possible 'normal forms' that determine how the new regime will look. Indicators such as increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) by detecting how dynamics slow down near the tipping point. But they do not indicate what type of new regime will emerge. Here we develop a deep learning algorithm that can detect EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behaviour of dynamics near tipping points that are common to many dynamical systems. The algorithm detects EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that will characterize the oncoming regime shift. Such approaches can help humans better manage regime shifts. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally-occurring tipping points.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106140118 ◽  
Author(s):  
Thomas M. Bury ◽  
R. I. Sujith ◽  
Induja Pavithran ◽  
Marten Scheffer ◽  
Timothy M. Lenton ◽  
...  

Many natural systems exhibit tipping points where slowly changing environmental conditions spark a sudden shift to a new and sometimes very different state. As the tipping point is approached, the dynamics of complex and varied systems simplify down to a limited number of possible “normal forms” that determine qualitative aspects of the new state that lies beyond the tipping point, such as whether it will oscillate or be stable. In several of those forms, indicators like increasing lag-1 autocorrelation and variance provide generic early warning signals (EWS) of the tipping point by detecting how dynamics slow down near the transition. But they do not predict the nature of the new state. Here we develop a deep learning algorithm that provides EWS in systems it was not explicitly trained on, by exploiting information about normal forms and scaling behavior of dynamics near tipping points that are common to many dynamical systems. The algorithm provides EWS in 268 empirical and model time series from ecology, thermoacoustics, climatology, and epidemiology with much greater sensitivity and specificity than generic EWS. It can also predict the normal form that characterizes the oncoming tipping point, thus providing qualitative information on certain aspects of the new state. Such approaches can help humans better prepare for, or avoid, undesirable state transitions. The algorithm also illustrates how a universe of possible models can be mined to recognize naturally occurring tipping points.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document