tipping points
Recently Published Documents


TOTAL DOCUMENTS

683
(FIVE YEARS 256)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
pp. 1-32
Author(s):  
Timothy M. Lenton ◽  
Scarlett Benson ◽  
Talia Smith ◽  
Theodora Ewer ◽  
Victor Lanel ◽  
...  

Author(s):  
Nastaran Navid Moghadam ◽  
Ramesh Ramamoorthy ◽  
Fahimeh Nazarimehr ◽  
Karthikeyan Rajagopal ◽  
Sajad Jafari

2021 ◽  
Author(s):  
David Armstrong McKay ◽  
Arie Staal ◽  
Jesse F Abrams ◽  
Ricarda Winkelmann ◽  
Boris Sakschewski ◽  
...  

Author(s):  
Christian L. E. Franzke ◽  
Alessio Ciullo ◽  
Elisabeth A. Gilmore ◽  
Denise Margaret Matias ◽  
Nidhi Nagabhatla ◽  
...  

Abstract The Earth system and the human system are intrinsically linked. Anthropogenic greenhouse gas emissions have led to the climate crisis, which is causing unprecedented extreme events and could trigger Earth system tipping elements. Physical and social forces can lead to tipping points and cascading effects via feedbacks and telecoupling, but the current generation of climate-economy models do not generally take account of these interactions and feedbacks. Here, we show the importance of the interplay between human societies and Earth systems in creating tipping points and cascading effects and the way they in turn affect sustainability and security. The lack of modeling of these links can lead to an underestimation of climate and societal risks as well as how societal tipping points can be harnessed to moderate physical impacts. This calls for the systematic development of models for a better integration and understanding of Earth and human systems at different spatial and temporal scales, specifically those that enable decision-making to reduce the likelihood of crossing local or global tipping points.


2021 ◽  
Author(s):  
Simon Willcock ◽  
Gregory Cooper ◽  
John Addy ◽  
John Dearing

Abstract The world’s ecosystems are undergoing unprecedented changes due to the impact of climate change and local human activities. A major concern is the possibility of tipping points where ecosystems and landscapes change abruptly to undesirable states. We consider what happens to the timing of tipping points when current stresses strengthen whilst systems experience additional stresses and/or extreme events. We run experiments on four mathematical models that simulate tipping points in lake water quality, the Easter Island community, the Chilika lagoon fishery, and forest dieback. We show that the strongest impacts occur under increasing levels of primary stress, but additional and more extreme stresses in all four models bring the tipping points significantly closer to today. Translating the results to the real world underlines the need for humanity to reduce damaging disturbances and global warming, and to be vigilant for signs that natural systems are degrading more rapidly than previously thought.


Author(s):  
Daniel Johnson ◽  
Gabriel G Katul ◽  
Jean-Christophe Domec

Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and these failures are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share a number of analogies to “catastrophe theory” in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points or alternative stable states when control variables exogenous (e.g. soil water potential) or endogenous (e.g. leaf water potential) to the plant are allowed to slowly vary. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion (i.e. cavitation), organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at very fine scales such as pit membranes, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Lacunarity areas in plant hydraulics are also flagged where progress is urgently needed.


2021 ◽  
Author(s):  
Erik Mackie

There is mounting evidence that some parts of the Earth system may be at risk of abrupt and potentially irreversible changes, driven by the cumulative impact of incremental global warming. Such a non-linear transition could be triggered if a critical threshold in global temperature – a “tipping point” – is crossed, when a small change could push a system into a completely new state, with potentially catastrophic impacts. In this technical briefing, we will first define tipping points and tipping elements, then explore several tipping elements in more detail and discuss the questions of abruptness, irreversibility, timescales and uncertainties for each of them. We also investigate the possibility of developing early warning systems for tipping points, and the risk of cascades of interacting tipping points, where one tipping point could trigger another.


2021 ◽  
Author(s):  
C. Neuwirth ◽  
C. Gruber

AbstractCovid-19 is the first digitally documented pandemic in history, presenting a unique opportunity to learn how to best deal with similar crises in the future. In this study we have carried out a model-based evaluation of the effectiveness of social distancing, using Austria and Slovenia as examples. Whereas the majority of comparable studies have postulated a negative relationship between the stringency of social distancing (reduction in social contacts) and the scale of the epidemic, our model has suggested a sinusoidal relationship, with tipping points at which the system changes its predominant regime from ‘less social distancing – more cumulative deaths and infections’ to ‘less social distancing – fewer cumulative deaths and infections’. This relationship was found to persist in scenarios with distinct seasonal variation in transmission and limited national intensive care capabilities. In such situations, relaxing social distancing during low transmission seasons (spring and summer) was found to relieve pressure from high transmission seasons (fall and winter) thus reducing the total number of infections and fatalities. Strategies that take into account this relationship could be particularly beneficial in situations where long-term containment is not feasible.


2021 ◽  
Vol 118 (50) ◽  
pp. e2102144118 ◽  
Author(s):  
Michael W. Macy ◽  
Manqing Ma ◽  
Daniel R. Tabin ◽  
Jianxi Gao ◽  
Boleslaw K. Szymanski

Research has documented increasing partisan division and extremist positions that are more pronounced among political elites than among voters. Attention has now begun to focus on how polarization might be attenuated. We use a general model of opinion change to see if the self-reinforcing dynamics of influence and homophily may be characterized by tipping points that make reversibility problematic. The model applies to a legislative body or other small, densely connected organization, but does not assume country-specific institutional arrangements that would obscure the identification of fundamental regularities in the phase transitions. Agents in the model have initially random locations in a multidimensional issue space consisting of membership in one of two equal-sized parties and positions on 10 issues. Agents then update their issue positions by moving closer to nearby neighbors and farther from those with whom they disagree, depending on the agents’ tolerance of disagreement and strength of party identification compared to their ideological commitment to the issues. We conducted computational experiments in which we manipulated agents’ tolerance for disagreement and strength of party identification. Importantly, we also introduced exogenous shocks corresponding to events that create a shared interest against a common threat (e.g., a global pandemic). Phase diagrams of political polarization reveal difficult-to-predict transitions that can be irreversible due to asymmetric hysteresis trajectories. We conclude that future empirical research needs to pay much closer attention to the identification of tipping points and the effectiveness of possible countermeasures.


Sign in / Sign up

Export Citation Format

Share Document