Evaluation of electronic pheromone trap capture conditions for Ips sexdentatus with climatic and temporal factors

2021 ◽  
Vol 193 (10) ◽  
Author(s):  
Gonca Ece Özcan ◽  
Hakan Şükrü Tabak
2021 ◽  
Vol 13 (6) ◽  
pp. 3274
Author(s):  
Suzanne Maas ◽  
Paraskevas Nikolaou ◽  
Maria Attard ◽  
Loukas Dimitriou

Bicycle sharing systems (BSSs) have been implemented in cities worldwide in an attempt to promote cycling. Despite exhibiting characteristics considered to be barriers to cycling, such as hot summers, hilliness and car-oriented infrastructure, Southern European island cities and tourist destinations Limassol (Cyprus), Las Palmas de Gran Canaria (Canary Islands, Spain) and the Valletta conurbation (Malta) are all experiencing the implementation of BSSs and policies to promote cycling. In this study, a year of trip data and secondary datasets are used to analyze dock-based BSS usage in the three case-study cities. How land use, socio-economic, network and temporal factors influence BSS use at station locations, both as an origin and as a destination, was examined using bivariate correlation analysis and through the development of linear mixed models for each case study. Bivariate correlations showed significant positive associations with the number of cafes and restaurants, vicinity to the beach or promenade and the percentage of foreign population at the BSS station locations in all cities. A positive relation with cycling infrastructure was evident in Limassol and Las Palmas de Gran Canaria, but not in Malta, as no cycling infrastructure is present in the island’s conurbation, where the BSS is primarily operational. Elevation had a negative association with BSS use in all three cities. In Limassol and Malta, where seasonality in weather patterns is strongest, a negative effect of rainfall and a positive effect of higher temperature were observed. Although there was a positive association between BSS use and the number of visiting tourists in Limassol and Malta, this is predominantly explained through the multi-collinearity with weather factors rather than by intensive use of the BSS by tourists. The linear mixed models showed more fine-grained results and explained differences in BSS use at stations, including differences for station use as an origin and as a destination. The insights from the correlation analysis and linear mixed models can be used to inform policies promoting cycling and BSS use and support sustainable mobility policies in the case-study cities and cities with similar characteristics.


2021 ◽  
Author(s):  
Typhanie Bouvenot ◽  
Amélie Dewitte ◽  
Nadia Bennaceur ◽  
Elizabeth Pradel ◽  
François Pierre ◽  
...  

AbstractTo thrive, vector-borne pathogens must survive in the vector’s gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway’s lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium’s lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles’ heel that is exploited by pathogens.


1995 ◽  
Vol 52 (7) ◽  
pp. 1406-1420 ◽  
Author(s):  
R. A. Reid ◽  
K. M. Somers ◽  
S. M. David

Surveys of benthic invertebrates have revealed patterns attributed to the impacts of acid deposition. Unfortunately, these patterns may be confounded by temporal variation that will affect follow-up studies of the recovery of these communities. Here, we assess spatial and temporal variation in time-limited, kick-and-sweep collections of littoral-zone benthos. Spatial variation comprised five sites representing the predominant nearshore substrates in each of three lakes. Temporal variation spanned a different scale in each lake with five sites sampled: (i) twice on the same day, (ii) once a week for 3 weeks, and (iii) four times through the ice-free season. Variation was quantified using a model II analysis of variance. Spatial differences predominated in same-day samples (60.4% of the variation on average) and those collected over a 3-week period (46.1%). In contrast, samples collected over the ice-free season revealed that spatial and temporal factors accounted for 9.4 and 25.6% of the variation. We conclude that our collections of littoral macrobenthos are highly repeatable if sampling is restricted to short periods (e.g., 3 weeks). Surveys spanning longer periods may incorporate considerable temporal variation from seasonal changes in abundance.


Sign in / Sign up

Export Citation Format

Share Document