LOCALIZED BREATHER-LIKE EXCITATIONS IN THE HELICOIDAL PEYRARD–BISHOP MODEL OF DNA

2009 ◽  
Vol 02 (04) ◽  
pp. 405-417 ◽  
Author(s):  
CONRAD BERTRAND TABI ◽  
ALIDOU MOHAMADOU ◽  
TIMOLEON CREPIN KOFANE

We consider the one-dimensional helicoidal Peyrard–Bishop (PB) model of DNA dynamics. By means of a method based on the Jacobian elliptic functions, we obtain the exact analytical solution which describes the modulational instability and the propagation of a bright solitary wave on a continuous wave background. It is shown that these solutions depend on the modulational (or Benjamin-Feir) instability criterion. Numerical simulations of their propagation show these excitations to be long-lived and suggest that they are physically relevant for DNA.

2013 ◽  
Vol 81 (5) ◽  
Author(s):  
M. A. Malkov

Using the Sobolev–Smirnov method, we have found the exact analytical solution of a longitudinal impact of semi-infinite plane elastic bars for any time after the impact. After collision, there are loading waves from contact surfaces of bars and unloading waves from lateral surfaces. Then the unloading waves reach the opposite surface of the bars and create the reflected loading waves. These loading waves reach the other surface of the bars and generate new unloading waves. The number of waves grows exponentially. The sum of waves tends to the wave of the one-dimensional approximation.


2014 ◽  
Vol 11 (4) ◽  
pp. 523-534
Author(s):  
Grigore Cividjian

The one-dimensional transient electromagnetic field in and around a system of two nonmagnetic homogenous rectangular high thin bars can be analytically evaluated if the ratio of average initial magnetic field on the two sides of thin bar, or of the ratio of initial magnetic fields in middle of the bar height is known. In this paper, using appropriate conformal mappings, an exact analytical solution for these ratios are proposed in the case of very thin bars. Obtained values are compared with FEM results for relatively thick bars.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1084-1092
Author(s):  
Hongyun Wang ◽  
Wesley A. Burgei ◽  
Hong Zhou

Abstract Pennes’ bioheat equation is the most widely used thermal model for studying heat transfer in biological systems exposed to radiofrequency energy. In their article, “Effect of Surface Cooling and Blood Flow on the Microwave Heating of Tissue,” Foster et al. published an analytical solution to the one-dimensional (1-D) problem, obtained using the Fourier transform. However, their article did not offer any details of the derivation. In this work, we revisit the 1-D problem and provide a comprehensive mathematical derivation of an analytical solution. Our result corrects an error in Foster’s solution which might be a typo in their article. Unlike Foster et al., we integrate the partial differential equation directly. The expression of solution has several apparent singularities for certain parameter values where the physical problem is not expected to be singular. We show that all these singularities are removable, and we derive alternative non-singular formulas. Finally, we extend our analysis to write out an analytical solution of the 1-D bioheat equation for the case of multiple electromagnetic heating pulses.


2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


An analytical solution of Riemann’s equations for the one-dimensional propagation of sound waves of finite amplitude in a gas obeying the adiabatic law p = k ρ γ is obtained for any value of the parameter γ. The solution is in the form of a complex integral involving an arbitrary function which is found from the initial conditions by solving a generalization of Abel’s integral equation. The results are applied to the problem of the expansion of a gas cloud into a vacuum.


Sign in / Sign up

Export Citation Format

Share Document