scholarly journals The Doppler Effect and the Anisotropy of the Speed of Light

2020 ◽  
Vol 50 (5) ◽  
pp. 429-440
Author(s):  
Michał Drągowski ◽  
Marta Włodarczyk
2021 ◽  
Author(s):  
Tony Yuan

Abstract For any object with finite velocity, the relative velocity between them will affect the effect between them. This effect can be called the chasing effect (general Doppler effect). LIGO discovered gravitational waves and measured the speed of gravitational waves equal to the speed of light c. Gravitational waves are generated due to the disturbance of the gravitational field, and the gravitational waves will affect the gravitational force on the object. We know that light waves have the Doppler effect, and gravitational waves also have this characteristic. The article studies the following questions around gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of the gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field on the object)? What is the speed of the gravitational field? Will gravitational waves caused by the revolution of the sun affect planetary precession?


2007 ◽  
Vol 16 (12b) ◽  
pp. 2499-2510 ◽  
Author(s):  
HANSJÖRG DITTUS ◽  
CLAUS LÄMMERZAHL

Clocks are an almost universal tool for exploring the fundamental structure of theories related to relativity. For future clock experiments, it is important for them to be performed in space. One mission which has the capability to perform and improve all relativity tests based on clocks by several orders of magnitude is OPTIS. These tests consist of (i) tests of the isotropy of light propagation (from which information about the matter sector which the optical resonators are made of can also be drawn), (ii) tests of the constancy of the speed of light, (iii) tests of the universality of the gravitational redshift by comparing clocks based on light propagation, like light clocks and various atomic clocks, (iv) time dilation based on the Doppler effect, (v) measuring the absolute gravitational redshift, (vi) measuring the perihelion advance of the satellite's orbit by using very precise tracking techniques, (vii) measuring the Lense–Thirring effect, and (viii) testing Newton's gravitational potential law on the scale of Earth-bound satellites. The corresponding tests are not only important for fundamental physics but also indispensable for practical purposes like navigation, Earth sciences, metrology, etc.


2019 ◽  
Author(s):  
段贤香

The assumption that the speed of light does not change contradicts the doppler effect. In the real universe, the speed of light is not a constant speed between the light source and the observer. The speed of light is relative and time is absolute.


2021 ◽  
Author(s):  
Tony Yuan

Abstract For any object with finite velocity, the relative velocity between them will affect the effect between them. This effect can be called the chasing effect (general Doppler effect). LIGO discovered gravitational waves and measured the speed of gravitational waves equal to the speed of light c. Gravitational waves are generated due to the disturbance of the gravitational field, and the gravitational waves will affect the gravitational force on the object. We know that light waves have the Doppler effect, and gravitational waves also have this characteristic. The article studies the following questions around gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of the gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field on the object)? What is the speed of the gravitational field? Will gravitational waves caused by the revolution of the sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


1998 ◽  
Vol 13 (01) ◽  
pp. 1-6 ◽  
Author(s):  
BRUNO BERTOTTI

The increase in the accuracy of Doppler measurements in space requires a rigorous definition of the observed quantity when the propagation occurs in a moving, and possibly dispersive medium, like the solar wind. This is usually done in two divergent ways: in the phase viewpoint it is the time derivative of the correction to the optical path; in the ray viewpoint the signal is obtained form the deflection produced in the ray. They can be reconciled by using the time derivative of the optical path in the Lagrangian sense, i.e. differentiating from ray to ray. To rigorously derive this result an understanding, through relativistic Hamiltonian theory, of the delicate interplay between rays and phase is required; a general perturbation theorem which generalizes the concept of the Doppler effect as a Lagrangian derivative is proved. Relativistic retardation corrections O(v) are obtained, well within the expected sensitivity of Doppler experiments near solar conjunction.


Sign in / Sign up

Export Citation Format

Share Document