Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia

2013 ◽  
Vol 95 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Ambachew Demessie ◽  
Bal Ram Singh ◽  
Rattan Lal
2015 ◽  
Vol 90 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Dong-Gill Kim ◽  
Berhanu Terefe ◽  
Shimelis Girma ◽  
Haji Kedir ◽  
Nebi Morkie ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Gracielle de Brito Sales ◽  
Taynan Aquilles Marinho Lessa ◽  
Daniela Aparecida Freitas ◽  
Maria das Dores Magalhães Veloso ◽  
Maria Ligia de Souza Silva ◽  
...  

2014 ◽  
Vol 190 ◽  
pp. 52-59 ◽  
Author(s):  
Joice Mari Assmann ◽  
Ibanor Anghinoni ◽  
Amanda Posselt Martins ◽  
Sérgio Ely Valadão Gigante de Andra Costa ◽  
Diego Cecagno ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 2365-2380
Author(s):  
Xavier Morel ◽  
Birger Hansen ◽  
Christine Delire ◽  
Per Ambus ◽  
Mikhail Mastepanov ◽  
...  

Abstract. Arctic and boreal peatlands play a major role in the global carbon (C) cycle. They are particularly efficient at sequestering carbon because their high water content limits decomposition rates to levels below their net primary productivity. Their future in a climate-change context is quite uncertain in terms of carbon emissions and carbon sequestration. Nuuk fen is a well-instrumented Greenlandic fen with monitoring of soil physical variables and greenhouse gas fluxes (CH4 and CO2) and is of particular interest for testing and validating land-surface models. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a complete evaluation of models, as soil carbon is one of the primary drivers of CH4 and CO2 soil emissions. To address this issue, we measured, for the first time, soil carbon and nitrogen density, profiles and stocks in the Nuuk peatland (64∘07′51′′ N, 51∘23′10′′ W), colocated with the greenhouse gas measurements. Measurements were made along two transects, 60 and 90 m long and with a horizontal resolution of 5 m and a vertical resolution of 5 to 10 cm, using a 4 cm diameter gouge auger. A total of 135 soil samples were analyzed. Soil carbon density varied between 6.2 and 160.2 kg C m−3 with a mean value of 50.2 kg C m−3. Mean soil nitrogen density was 2.37 kg N m−3. Mean soil carbon and nitrogen stocks are 36.3 kg C m−2 and 1.7 kg N m−2. These new data are in the range of those encountered in other arctic peatlands. This new dataset, one of very few in Greenland, can contribute to further development of joint modeling of greenhouse gas emissions and soil carbon and nitrogen in land-surface models. The dataset is open-access and available at https://doi.org/10.1594/PANGAEA.909899 (Morel et al., 2019b).


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7880 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Xiaoqiang Li

Soil carbon and nitrogen are essential factors for agricultural production and climate changes. A total of 106 soil samples from three agricultural lands (including two rice fields and one sugarcane field) and four non-agricultural lands (including two forest lands, one wasteland and one built-up land) in the Mun River Basin were collected to determine soil carbon, nitrogen, soil pH, soil particle sizes and explore the influence of pH and soil texture on soil C and N. The results show that total organic carbon (TOC) and nitrogen (TON) contents in topsoil (TOC: 2.78 ~ 18.83 g kg−1; TON: 0.48 ~ 2.05 g kg−1) are much higher than those in deep soil (TOC: 0.35 ~ 6.08 g kg−1; TON: <0.99 g kg−1). In topsoil, their contents of forest lands and croplands (TOC: average 15.37 g kg−1; TON: average 1.29 g kg−1) are higher than those of other land uses (TOC: average 5.28 g kg−1; TON: average 0.38 g kg−1). The pH values range from 4.2 to 6.1 in topsoil, and with increase in soil depth, they tend to increase and then decrease. Soil carbon, nitrogen and the C/N (TC/TN ratio) are negatively correlated with soil pH, demonstrating that relatively low pH benefits the accumulation of organic matter. Most soil samples are considered as sandy loam and silt loam from the percentages of clay, silt and sand. For soil profiles below 50 cm, the TOC and TON average contents of soil samples which contain more clay and silt are higher than those of other soil samples.


Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 238 ◽  
Author(s):  
Cole D. Gross ◽  
Jason N. James ◽  
Eric C. Turnblom ◽  
Robert B. Harrison

Geoderma ◽  
2011 ◽  
Vol 165 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Melvin L. Kunkel ◽  
Alejandro N. Flores ◽  
Toni J. Smith ◽  
James P. McNamara ◽  
Shawn G. Benner

Sign in / Sign up

Export Citation Format

Share Document