Research on In Situ Stress Measurement and Inversion, and its Influence on Roadway Layout in Coal Mine with Thick Coal Seam and Large Mining Height

2017 ◽  
Vol 36 (3) ◽  
pp. 1907-1917 ◽  
Author(s):  
Song Zhifei ◽  
Sun Yun-jiang ◽  
Lin Xuan
2012 ◽  
Vol 450-451 ◽  
pp. 1601-1607 ◽  
Author(s):  
Jiong Wang ◽  
Zhi Biao Guo ◽  
Feng Zhou ◽  
Feng Bin Su ◽  
Bao Liang Li

Many kinds of in situ stress measurement methods are used nowadays, two most common of which are the overcoring and the hydraulic fracturing methods. In order to study the distribution law of in situ stress field in the deep position of Xingcun coal mine, 4 points of in situ stress measurement were carried out in underground roadways at the -1200 m level adopting the overcoring method. The hollow included technique was used to measure the 4 points of in-situ stress. According to the analysis of the measurement data, the results indicated that: (1) Among the three principal stresses on all measurement points, two principal stresses were nearly horizontal and one was nearly vertical. Furthermore, the maximum horizontal principal stress was more than the vertical principal stress, and the magnitude of vertical stress was equal to the weight of overburden rock mass;(2)The value of the maximum horizontal principal stress reached 52.3 MPa , the directions mainly concentrated on the extension of N42°W – N85°W, and the obliquity mainly concentrated on the extension of -29° – 10°;(3)The ratio of maximum horizontal principal stress to vertical principal stress was 1.42 - 1.64 with an average value of 1.55. The result presented that the in situ stress field in Xingcun coalmine at the depth of -1200m was dominated by tectonic horizontal stress. According to the results above, we gained the in situ stress states and the distribution law in the measured region. At the same time, it can offer reasonable basic parameters for underground roadway layout and support design of Xingcun coalmine.


2013 ◽  
Vol 275-277 ◽  
pp. 282-285
Author(s):  
Jiong Wang ◽  
Yang Liu ◽  
Zhi Biao Guo ◽  
Jie Wen Pang ◽  
Bin Liu

In order to study the distribution law of in situ stress field of Tingnan coal mine, 4 points of in situ stress measurement were carried out in underground roadways at the -450 m level with the overcoring method. The KX-81 type cell was used to measure the 4 points of in-situ stress. According to the analysis and calculation of the measurement result, the dominant factor of the in situ stress field in Tingnan coal mine at the depth of -450m is horizontal tectonic stress.


2013 ◽  
Vol 671-674 ◽  
pp. 65-68
Author(s):  
Hong Man Xia ◽  
Jiong Wang ◽  
Yang Liu ◽  
Jie Wen Pang ◽  
Dong Qiao Liu ◽  
...  

There are many in situ stress measurement methods nowadays, the ISRM suggested two methods for in situ stresses measurement: overcoring methods and the hydraulic fracturing methods. In order to study the distribution law of in situ stress field in the deep position of Hongyang coal mine, 3 points of in situ stress measurement were carried out in underground roadways at the -870 m level adopting the overcoring method. The KX-81 type gauge was used to measure the 3 points of in-situ stress. According to the analysis and calculation of the measurement data, the result showed that the in situ stress field in Hongyang coal mine at the depth of -870m was dominated by horizontal tectonic stress.


2013 ◽  
Vol 734-737 ◽  
pp. 759-763 ◽  
Author(s):  
Yong Li ◽  
Yun Yi Zhang ◽  
Ren Jie Gao ◽  
Shuai Tao Xie

Jixi mine area is one of the early mined areas in China and it's a typical deep mine. Because of large deformation of underground roadway and dynamic disasters occurred frequently in this mine, five measurement points of in-situ stress in this mine was measured and then analyzed with inversion. Based on these in-situ stress measurement data, numerical model of 3D in-situ stress back analysis was established. According to different stress fields, related analytical samples of neural network were given with FLAC program. Through the determination of hidden layers, hidden nodes and the setting of parameters, the network was optimized and trained. Then according to field measurement of in-situ stress, back analysis of initial stress field was conducted. Compared with field measurement, with accuracy requirement satisfied, it shows that the in-situ stress of rock mass obtained is basically reasonable. Meanwhile, it proves that the measurement of in-situ stress can provide deep mines with effective and rapid means, and also provide reliable data to optimization of deep roadway layout and supporting design.


Sign in / Sign up

Export Citation Format

Share Document