initial stress field
Recently Published Documents





L.K. Miroshnikova ◽  
A.Yu. Mezentsev ◽  
G.A. Kadyralieva ◽  
M.A. Perepelkin

This study focuses on the markers of tectonically stressed zones inside the rock mass, that were identified during the regional geodynamic zoning of the mine fields of the Talnakh orogenic system. Identification features for tracing geodynamically active structures within the western flank of the Talnakh orogenic system have been identified based on morphometric analysis of the Tunguska series sediments, which are the upper layer of the ore-bearing intrusions and associated ore deposits. In the larger morphostructural groups, the boundaries of contrastingly alternating zones of elevated and depressed absolute depths at the base and the roof of the Tunguska series sediments represent the boundaries of tectonic blocks of different elevation levels with sharply contrasting indices of terrain stress. The circular-shaped structures highlighted in the morphostructural schemes spatially coincide with the tectonic forms were formed as the result of strike-slip and torsional processes. A heterogeneity, which is reflected in the allocation of blocks with different values of the stress distribution coefficient (K) is identified in the initial stress field of the Tunguska series sediments. The boundaries of the geodynamic blocks that were identified using to different methods are identical. It is established that the assumed faults correspond to the faults identified based on the detailed exploration data.

2021 ◽  
pp. 875529302110416
Marc-Denis Rioux ◽  
Marie-José Nollet ◽  
Bertrand Galy

This article covers the impact of soil initial stress field heterogeneity (ISFH) in wave-passage analysis and in prescribed structural acceleration in the context of dynamic soil–structure interaction (DSSI) analysis. ISFH is directly related to the natural behavior of soil where a significant increase in net effective confinement, as is the case in the foundation soil under a building, tends to increase the soil’s modulus and strain. This creates a heterogeneous stress field in the vicinity of the foundation elements, which results in a modification of the dynamic behavior of the soil–structure system. A simple method for considering the impact of ISFH on the value of the soil’s modulus and strain was developed using the direct DSSI approach. The method was used to analyze numerical artifacts and its impact on the surface acceleration values of a nonlinear two-dimensional (2D) numerical soil deposit under transient loading. This analysis was followed by a sample application for a three-story, three-bay concrete moment-resisting frame structure erected on a deep soil deposit. Floor acceleration and relative displacement were used for comparison. The soil deposit was modeled using the typical geotechnical properties of fine-grained, post-glacial soil samples obtained in Eastern Canada from in situ geotechnical borehole drilling, geophysical surveys, and laboratory testing. Ground motion was based on eastern calibrated seismic signals. The results of the soil deposit analysis show that ISFH had a significant impact on surface acceleration values. The effect was found to be period-dependent and to have a direct impact on prescribed acceleration values at the base of structure. Thus, failure to take the effects of ISFH into consideration can lead to errors in calculating prescribed structural accelerations (i.e. over- or underestimation).

A.K Matayev ◽  
V.H Lozynskyi ◽  
A Musin ◽  
R.M Abdrashev ◽  
A.S Kuantay ◽  

Purpose. Predicting the formation of a stress-strain state (SSS) in the rock mass within the boundaries of influence of stope operations on the horizon -480 m in axes 2028 at the 10th Anniversary of Kazakhstans Independence (DNK) Mine. Methodology. An engineering-geological data on the host rocks properties are analyzed based on the international ISRM standard. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the compound support (roof-bolt+shotcrete+mesh) and arch support used at the mine are performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the rock mass state. Findings. The calculations performed indicate that the support resistance is incommensurably low in comparison with the values of the initial stress field components in the rock mass. In such conditions, it may be more effective to strengthen the mass in the vicinity of mine working than setting more frames or using more massive support profiles. Originality. The paper presents the results of mathematical modeling and calculation of the stress-strain state of the underground supporting aquifer rock mass structures developed for complex mining-and-geological and geomechanical conditions of driving, supporting and operating mine workings on deep horizons of the mines at Donskoy Ore Mining and Processing Plant. Based on the performed research, the preliminary (advanced) strengthening of the border rock mass in the zone of inelastic (destructive) deformations has been substantiated, as a priority method to control the stability of mine workings. Practical value. The research results can be used when creating a geomechanical model of the field and designing stable parameters of mine working support.

Mirenkov Valerii

Introduction. The article considers a variant of a straight finite fracture modeled by a mathematical cut in the elastic plane. Aim. The new model proposed differs from the existing models by the damage zone bounded by the elastic material at the fracture tip up to the moment of the fracture growth. The process of fracturing is essentially nonlinear. Methodology. The model is based on the full-scale tension experiments with a reference sample of rocks enclosing a fracture and having the characteristic stress points, namely, proportionality limit, elasticity limit, plasticity domain and the domain in the vicinity of destructive stresses. Results. The problem with fracture is considered as an experiment to determine deformation with growing pressure in the fracture. The problem has no correct analytical solution. The problem on hydrofracture 20 "Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal". No. 4. 2020 ISSN 0536-1028 assumes the presence of the initial stress field in rock mass, which is essentially used in formulation of boundary conditions. Conclusions. All such problems belong to the class of Cauchy’s problems with an infinitely distant point in the computational domain. This article proposes the correct formulation of the fracture theory problem in the static, kinematic and dynamic framework.

2020 ◽  
Vol 110 (3) ◽  
pp. 1011-1024 ◽  
Hui Wang ◽  
Mian Liu ◽  
Benchun Duan ◽  
Jianling Cao

ABSTRACT Large earthquakes on strike-slip faults often rupture multiple fault segments by jumping over stepovers. Previous studies, based on field observations or numerical modeling with a homogeneous initial stress field, have suggested that stepovers more than ∼5  km wide would stop the propagation of rupture, but many exceptions have been observed in recent years. Here, we integrate a dynamic rupture model with a long-term fault stress model to explore the effects of background stress perturbation on rupture propagation across stepovers along strike-slip faults. Our long-term fault models simulate steady-state stress perturbation around stepovers. Considering such stress perturbation in dynamic rupture models leads to prediction of larger distance a dynamic rupture can jump over stepovers: over 15 km for a releasing stepover or 7 km for a restraining stepover, comparing with the 5 km limit in models with the same fault geometry and frictional property but assuming a homogeneous initial stress. The effect of steady-state stress perturbations is stronger in an overlapping stepover than in an underlapping stepover. The maximum jumping distance can reach 20 km in an overlapping releasing stepover with low-static frictional coefficients. These results are useful for estimating the maximum length of potential fault ruptures and assessing seismic hazard.

2020 ◽  
Vol 110 (2) ◽  
pp. 816-824
Feng Qian ◽  
Haiming Zhang

ABSTRACT Using the boundary integral equation method with the slip-weakening friction law, we investigate the effects of the initial stress field and the critical slip-weakening distance on the rupture selectivity on the 3D buried branched faults. The numerical results show that after reaching the bifurcation line between the main fault and the branched faults, rupture continues to propagate on one or both bifurcation planes (BPs), with rupture on one plane more favorable than the other. The initial stress distribution plays a decisive role in the selection of the favorable BP (FBP), and there is a critical status of stress distribution, around which rupture propagates on both planes, whereas the FBP switches between the two. For a given fault geometry, the critical status of initial stress, which is described by a ratio Fp between normal stresses, is related to the critical slip-weakening distance Dc.

Sign in / Sign up

Export Citation Format

Share Document