Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum

Genetica ◽  
2011 ◽  
Vol 139 (8) ◽  
pp. 999-1008 ◽  
Author(s):  
Isidoro Feliciello ◽  
Gianni Chinali ◽  
Đurđica Ugarković
2014 ◽  
Vol 7 (1) ◽  
pp. 228-239 ◽  
Author(s):  
Isidoro Feliciello ◽  
Ivana Akrap ◽  
Josip Brajković ◽  
Ivo Zlatar ◽  
Đurđica Ugarković

2020 ◽  
Vol 16 (4) ◽  
pp. 404-412 ◽  
Author(s):  
Ihab Alnajim ◽  
Manjree Agarwal ◽  
Tao Liu ◽  
YongLin Ren

Background: The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is one of the world’s most serious stored grain insect pests. A method of early and rapid identification of red flour beetle in stored products is urgently required to improve control options. Specific chemical signals identified as Volatile Organic Compounds (VOCs) that are released by the beetle can serve as biomarkers. Methods: The Headspace Solid Phase Microextraction (HS-SPME) technique and the analytical conditions with GC and GCMS were optimised and validated for the determination of VOCs released from T. castaneum. Results: The 50/30 μm DVB/CAR/PDMS SPME fibre was selected for extraction of VOCs from T. castaneum. The efficiency of extraction of VOCs was significantly affected by the extraction time, temperature, insect density and type of SPME fibre. Twenty-three VOCs were extracted from insects in 4 mL flask at 35 ± 1°C for four hours of extraction and separated and identified with gas chromatography-mass spectroscopy. The major VOCs or chemical signals from T. castaneum were 1-pentadecene, p-Benzoquinone, 2-methyl- and p-Benzoquinone, 2-ethyl. Conclusion: This study showed that HS-SPME GC technology is a robust and cost-effective method for extraction and identification of the unique VOCs produced by T. castaneum. Therefore, this technology could lead to a new approach in the timely detection of T. castaneum and its subsequent treatment.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 417-426
Author(s):  
Richard W Beeman ◽  
M Scott Thomson ◽  
John M Clark ◽  
Marco A DeCamillis ◽  
Susan J Brown ◽  
...  

Abstract A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.


Sign in / Sign up

Export Citation Format

Share Document