scholarly journals Generation means analysis of traits related to lodging using two crosses of durum × emmer wheat

Author(s):  
Majid Mohammadi ◽  
Aghafakhr Mirlohi ◽  
Mohammad Mahdi Majidi ◽  
Zahra Khedri ◽  
Vahid Rezaei
Euphytica ◽  
2004 ◽  
Vol 139 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Frederick Hakizimana ◽  
Amir M.H. Ibrahim ◽  
Marie A.C. Langham ◽  
Jackie C. Rudd ◽  
Scott D. Haley

2013 ◽  
Vol 27 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Jeffrey N. Wilson ◽  
Michael R. Baring ◽  
Mark D. Burow ◽  
William L. Rooney ◽  
Charles E. Simpson

1998 ◽  
Vol 21 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Claudia E. Lange ◽  
Luiz C. Federizzi ◽  
Fernando I.F. Carvalho ◽  
Ana L.C. Dornelles ◽  
Cristine L. Handel

The genetic bases of in vitro organogenesis and precocious germination of embryos in immature wheat embryo culture were investigated using six Brazilian genotypes and their F1, F2, BC1F1 and BC2F1 generations in a generation means analysis. Four parents and one set of F1’s were also analyzed in a diallel experiment. The results indicated a complex gene action controlling both traits, with additive, dominant and epistatic effects. High broad sense heritability values were found, indicating genetic determination. Considering the complexity of gene control, genetic gain could be achieved by selecting for the traits in advanced generations of the segregating population. Low correlation values between organogenesis, precocious germination, regeneration and somatic embryogenesis (data shown in a previous report) indicated the possibility of obtaining recombinant genotypes.


2013 ◽  
Vol 27 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Jeffrey N. Wilson ◽  
Michael R. Baring ◽  
Mark D. Burow ◽  
William L. Rooney ◽  
Jennifer C. Chagoya ◽  
...  

2020 ◽  
Vol 5 (5) ◽  
pp. 1389-1396
Author(s):  
Maina Antoine Nassourou ◽  
Souina Dolinassou ◽  
Mathias Julien Hand ◽  
M.M.I. Aladji Abatchoua ◽  
Ange Ndogonoudji Alladoum ◽  
...  

1998 ◽  
Vol 123 (5) ◽  
pp. 832-836 ◽  
Author(s):  
John R. Stommel ◽  
Kathleen G. Haynes

Inheritance of resistance to tomato anthracnose caused by Colletotrichum coccodes (Wallr.) S.J. Hughes was evaluated in parental, F1, F2, and backcross populations developed from crosses between adapted resistant (88B147) and susceptible (90L24) tomato (Lycopersicon esculentum Mill.) breeding lines. Resistance was evaluated via measurement of lesion diameters in fruit collected from field-grown plants and puncture inoculated in a shaded greenhouse. Backcross and F2 populations exhibited continuous distributions suggesting multigenic control of anthracnose resistance. Anthracnose resistance was partially dominant to susceptibility. Using generation means analysis, gene action in these populations was best explained by an additive-dominance model with additive × additive epistatic effects. A broad-sense heritability (H) of 0.42 and narrow-sense heritability (h2) of 0.004 was estimated for resistance to C. coccodes. One gene or linkage group was estimated to control segregation for anthracnose resistance in the cross of 90L24 × 88B147.


2021 ◽  
Author(s):  
Majid Mohammadi ◽  
Aghafakhr Mirlohi ◽  
Mohammad Mahdi Majidi ◽  
Zahra Khedri ◽  
Vahid Rezaei

Abstract Lodging is one of the most important factors that affect wheat final yield. Emmer is a likely gene source to improve durum wheat; however, it is highly susceptible to lodging. The genetic studies of traits related to lodging in crosses of durum×emmer remains largely understudied. Here, we used progenies (six generations) derived from two crosses of durum×emmer in a generation means analysis (GMA) to determine gene action, inheritance, and genetic gain from selection in respect to plant height and its related traits. The results indicated that lodging resistance was significantly and negatively correlated with plant height and positively correlated with grain yield and mainly influenced by stem diameter. GMA results indicated that epistasis did not play an essential role in the genetic control of lodging related traits and almost the major portion of the genetic variation in these crosses resulted from additive gene actions. Also for all of the studied traits, the additive variance was higher than the dominance one. Narrow sense heritability was higher than 0.60 for most of the traits, and the genetic gain after one cycle of selection was positive for plant height and its components in both crosses. It was found that, selection in early generations may result in simultaneous reduction of plant height and increased stem diameter to improve lodging resistance in durum×emmer crossings.


Sign in / Sign up

Export Citation Format

Share Document