Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm

2009 ◽  
Vol 16 (3) ◽  
pp. 511-535 ◽  
Author(s):  
Yun-Chia Liang ◽  
Min-Hua Lo
2010 ◽  
Vol 7 (4) ◽  
pp. 907-930 ◽  
Author(s):  
Jun-Qing Li ◽  
Quan-Ke Pan ◽  
Sheng-Xian Xie

In this paper, we propose a novel hybrid variable neighborhood search algorithm combining with the genetic algorithm (VNS+GA) for solving the multi-objective flexible job shop scheduling problems (FJSPs) to minimize the makespan, the total workload of all machines, and the workload of the busiest machine. Firstly, a mix of two machine assignment rules and two operation sequencing rules are developed to create high quality initial solutions. Secondly, two adaptive mutation rules are used in the hybrid algorithm to produce effective perturbations in machine assignment component. Thirdly, a speed-up local search method based on public critical blocks theory is proposed to produce perturbation in operation sequencing component. Simulation results based on the well-known benchmarks and statistical performance comparisons are provided. It is concluded that the proposed VNS+GA algorithm is superior to the three existing algorithms, i.e., AL+CGA algorithm, PSO+SA algorithm and PSO+TS algorithm, in terms of searching quality and efficiency.


2021 ◽  
Author(s):  
H. R. E. H. Bouchekara ◽  
M. S. Shahriar ◽  
M. S. Javaid ◽  
Y. A. Sha’aban ◽  
M. Zellagui ◽  
...  

Author(s):  
Manel Kammoun ◽  
Houda Derbel ◽  
Bassem Jarboui

In this work we deal with a generalized variant of the multi-vehicle covering tour problem (m-CTP). The m-CTP consists of minimizing the total routing cost and satisfying the entire demand of all customers, without the restriction of visiting them all, so that each customer not included in any route is covered. In the m-CTP, only a subset of customers is visited to fulfill the total demand, but a restriction is put on the length of each route and the number of vertices that it contains. This paper tackles a generalized variant of the m-CTP, called the multi-vehicle multi-covering Tour Problem (mm-CTP), where a vertex must be covered several times instead of once. We study a particular case of the mm-CTP considering only the restriction on the number of vertices in each route and relaxing the constraint on the length (mm-CTP-p). A hybrid metaheuristic is developet by combining Genetic Algorithm (GA), Variable Neighborhood Descent method (VND), and a General Variable Neighborhood Search algorithm (GVNS) to solve the problem. Computational experiments show that our approaches are competitive with the Evolutionary Local Search (ELS) and Genetic Algorithm (GA), the methods proposed in the literature.


Sign in / Sign up

Export Citation Format

Share Document