Parasites in subyearling Chinook salmon (Oncorhynchus tshawytscha) suggest increased habitat use in wetlands compared to sandy beach habitats in the Columbia River estuary

Hydrobiologia ◽  
2013 ◽  
Vol 717 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Andrew Claxton ◽  
Kym C. Jacobson ◽  
Mary Bhuthimethee ◽  
David Teel ◽  
Dan Bottom
2010 ◽  
Vol 67 (10) ◽  
pp. 1671-1684 ◽  
Author(s):  
Michela Burla ◽  
António M. Baptista ◽  
Edmundo Casillas ◽  
John G.  Williams ◽  
Douglas M.  Marsh

Are smolt-to-adult return rates (SARs) for wild steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss ) and wild Snake River spring–summer Chinook salmon ( Oncorhynchus tshawytscha ) related to changes in the Columbia River plume at the time that juvenile migrants enter the ocean? We used three-dimensional (3D) numerical models of the baroclinic circulation in the Columbia River estuary–plume–shelf system to simulate within-season variation in plume size and location, comparing the results with SARs for each day that juvenile salmon entered the ocean for 1999–2003. We found that steelhead benefited from the plume environment at a narrow window of time around their ocean entry. However, when large-scale ocean conditions turned unfavorable, the contribution of local plume conditions to the overall variability in steelhead survival became not significant. A similar evaluation revealed that the plume did not affect survival of Chinook salmon, at least at the fine scale of variability considered. The differential response between the two species is consistent with observed and previously reported behavioral characteristics they exhibit. We speculate that steelhead mainly use the plume to move quickly away from coastal habitats and the predation pressures associated with this environment, for a more direct migration than Chinook salmon to ocean habitats in the Gulf of Alaska.


1993 ◽  
Vol 57 (1) ◽  
pp. 19 ◽  
Author(s):  
Monte G. Garrett ◽  
James W. Watson ◽  
Robert G. Anthony

2000 ◽  
Vol 57 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
David R Geist ◽  
Julia Jones ◽  
Christopher J Murray ◽  
Dennis D Dauble

We improved our predictions of fall chinook salmon (Oncorhynchus tshawytscha) habitat use by analyzing spawning habitat at the spatial scale of redd clusters. Spatial point pattern analyses indicated that redd clusters in the Hanford Reach, Columbia River, were consistent in their location from 1994 to 1995. Redd densities were 16.1 and 8.9 redds·ha-1 in 1994 and 1995, respectively, and individual redds within clusters were usually less than 30 m apart. Pattern analysis also showed strong evidence that redds were uniformly distributed within the clusters where interredd distances ranged from 2 to 5 m. Redd clusters were found to occur predominantly where water velocity was between 1.4 and 2 m·s-1, water depth was 2-4 m, and lateral slope of the riverbed was less than 4%. This habitat use represented a narrower range of use than previously reported for adult fall chinook salmon. Logistic regression analysis determined that water velocity and lateral slope were the most significant predictors of redd cluster location over a range of river discharges. Overestimates of available spawning habitat lead to nonachievable goals for protecting and restoring critical salmonid habitat. Better predictions of spawning habitat may be possible if cluster-specific characteristics are used.


Sign in / Sign up

Export Citation Format

Share Document